SentenceTransformer
This is a sentence-transformers model trained on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("pankajrajdeo/bond-embed-v1-fp16")
# Run inference
sentences = [
'Light-chain amyloidosis',
'amyloidosis primary systemic',
'partial deletion of the long arm of chromosome X',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
owl_ontology_eval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6303 |
cosine_accuracy@3 | 0.8148 |
cosine_accuracy@5 | 0.8775 |
cosine_accuracy@10 | 0.9268 |
cosine_precision@1 | 0.6303 |
cosine_precision@3 | 0.2763 |
cosine_precision@5 | 0.1798 |
cosine_precision@10 | 0.0957 |
cosine_recall@1 | 0.6217 |
cosine_recall@3 | 0.8081 |
cosine_recall@5 | 0.8724 |
cosine_recall@10 | 0.9241 |
cosine_ndcg@10 | 0.7797 |
cosine_mrr@10 | 0.7342 |
cosine_map@100 | 0.7341 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 1,441,905 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 9.48 tokens
- max: 47 tokens
- min: 3 tokens
- mean: 8.68 tokens
- max: 30 tokens
- Samples:
anchor positive Mangshan horned toad
Mangshan spadefoot toad
Leuconotopicos borealis
Picoides borealis
Cylindrella teneriensis
Teneria teneriensis
- Loss:
CachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1024learning_rate
: 1.5e-05num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.05bf16
: Truedataloader_num_workers
: 32load_best_model_at_end
: Truegradient_checkpointing
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1024per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1.5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 32dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | owl_ontology_eval_cosine_ndcg@10 |
---|---|---|---|
0.0717 | 100 | 1.3232 | - |
0.1434 | 200 | 1.021 | - |
0.2151 | 300 | 0.9633 | - |
0.2867 | 400 | 0.9068 | - |
0.3297 | 460 | - | 0.7207 |
0.3584 | 500 | 0.8723 | - |
0.4301 | 600 | 0.852 | - |
0.5018 | 700 | 0.8161 | - |
0.5735 | 800 | 0.7939 | - |
0.6452 | 900 | 0.7935 | - |
0.6595 | 920 | - | 0.7364 |
0.7168 | 1000 | 0.7646 | - |
0.7885 | 1100 | 0.7464 | - |
0.8602 | 1200 | 0.7376 | - |
0.9319 | 1300 | 0.7313 | - |
0.9892 | 1380 | - | 0.7468 |
1.0036 | 1400 | 0.7099 | - |
1.0753 | 1500 | 0.6884 | - |
1.1470 | 1600 | 0.6776 | - |
1.2186 | 1700 | 0.6694 | - |
1.2903 | 1800 | 0.6641 | - |
1.3190 | 1840 | - | 0.7561 |
1.3620 | 1900 | 0.6526 | - |
1.4337 | 2000 | 0.6524 | - |
1.5054 | 2100 | 0.6364 | - |
1.5771 | 2200 | 0.6339 | - |
1.6487 | 2300 | 0.626 | 0.7614 |
1.7204 | 2400 | 0.6197 | - |
1.7921 | 2500 | 0.6193 | - |
1.8638 | 2600 | 0.6155 | - |
1.9355 | 2700 | 0.6142 | - |
1.9785 | 2760 | - | 0.7662 |
2.0072 | 2800 | 0.5853 | - |
2.0789 | 2900 | 0.5824 | - |
2.1505 | 3000 | 0.5769 | - |
2.2222 | 3100 | 0.5765 | - |
2.2939 | 3200 | 0.5608 | - |
2.3082 | 3220 | - | 0.7698 |
2.3656 | 3300 | 0.5695 | - |
2.4373 | 3400 | 0.5641 | - |
2.5090 | 3500 | 0.5638 | - |
2.5806 | 3600 | 0.554 | - |
2.6380 | 3680 | - | 0.7735 |
2.6523 | 3700 | 0.5539 | - |
2.7240 | 3800 | 0.5495 | - |
2.7957 | 3900 | 0.5556 | - |
2.8674 | 4000 | 0.5397 | - |
2.9391 | 4100 | 0.5447 | - |
2.9677 | 4140 | - | 0.7757 |
3.0108 | 4200 | 0.5331 | - |
3.0824 | 4300 | 0.5336 | - |
3.1541 | 4400 | 0.5346 | - |
3.2258 | 4500 | 0.5247 | - |
3.2975 | 4600 | 0.5241 | 0.7775 |
3.3692 | 4700 | 0.5257 | - |
3.4409 | 4800 | 0.5241 | - |
3.5125 | 4900 | 0.5171 | - |
3.5842 | 5000 | 0.5215 | - |
3.6272 | 5060 | - | 0.7787 |
3.6559 | 5100 | 0.5203 | - |
3.7276 | 5200 | 0.5214 | - |
3.7993 | 5300 | 0.5266 | - |
3.8710 | 5400 | 0.5127 | - |
3.9427 | 5500 | 0.5062 | - |
3.9570 | 5520 | - | 0.7790 |
4.0143 | 5600 | 0.5104 | - |
4.0860 | 5700 | 0.5155 | - |
4.1577 | 5800 | 0.5042 | - |
4.2294 | 5900 | 0.5174 | - |
4.2867 | 5980 | - | 0.7797 |
4.3011 | 6000 | 0.509 | - |
4.3728 | 6100 | 0.5106 | - |
4.4444 | 6200 | 0.5076 | - |
4.5161 | 6300 | 0.5046 | - |
4.5878 | 6400 | 0.5077 | - |
4.6165 | 6440 | - | 0.7795 |
4.6595 | 6500 | 0.5114 | - |
4.7312 | 6600 | 0.5103 | - |
4.8029 | 6700 | 0.5106 | - |
4.8746 | 6800 | 0.5102 | - |
4.9462 | 6900 | 0.5076 | 0.7797 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 24
Evaluation results
- Cosine Accuracy@1 on owl ontology evalself-reported0.630
- Cosine Accuracy@3 on owl ontology evalself-reported0.815
- Cosine Accuracy@5 on owl ontology evalself-reported0.878
- Cosine Accuracy@10 on owl ontology evalself-reported0.927
- Cosine Precision@1 on owl ontology evalself-reported0.630
- Cosine Precision@3 on owl ontology evalself-reported0.276
- Cosine Precision@5 on owl ontology evalself-reported0.180
- Cosine Precision@10 on owl ontology evalself-reported0.096
- Cosine Recall@1 on owl ontology evalself-reported0.622
- Cosine Recall@3 on owl ontology evalself-reported0.808