new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 26

Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Composite Spatial Reasoning

Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks. However, their proficiency in spatial reasoning remains limited, despite its crucial role in tasks involving navigation and interaction with physical environments. Specifically, most of these tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments, and our evaluation reveals that state-of-the-art VLMs frequently generate implausible and incorrect responses to composite spatial reasoning problems, including simple pathfinding tasks that humans can solve effortlessly at a glance. To address this, we explore an effective approach to enhance 2D spatial reasoning within VLMs by training the model solely on basic spatial capabilities. We begin by disentangling the key components of 2D spatial reasoning: direction comprehension, distance estimation, and localization. Our central hypothesis is that mastering these basic spatial capabilities can significantly enhance a model's performance on composite spatial tasks requiring advanced spatial understanding and combinatorial problem-solving, with generalized improvements in visual-spatial tasks. To investigate this hypothesis, we introduce Sparkle, a framework that fine-tunes VLMs on these three basic spatial capabilities by synthetic data generation and targeted supervision to form an instruction dataset for each capability. Our experiments demonstrate that VLMs fine-tuned with Sparkle achieve significant performance gains, not only in the basic tasks themselves but also in generalizing to composite and out-of-distribution spatial reasoning tasks. These findings underscore the effectiveness of mastering basic spatial capabilities in enhancing composite spatial problem-solving, offering insights into systematic strategies for improving VLMs' spatial reasoning capabilities.

LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial Reasoning?

Multi-step spatial reasoning entails understanding and reasoning about spatial relationships across multiple sequential steps, which is crucial for tackling complex real-world applications, such as robotic manipulation, autonomous navigation, and automated assembly. To assess how well current Multimodal Large Language Models (MLLMs) have acquired this fundamental capability, we introduce LEGO-Puzzles, a scalable benchmark designed to evaluate both spatial understanding and sequential reasoning in MLLMs through LEGO-based tasks. LEGO-Puzzles consists of 1,100 carefully curated visual question-answering (VQA) samples spanning 11 distinct tasks, ranging from basic spatial understanding to complex multi-step reasoning. Based on LEGO-Puzzles, we conduct a comprehensive evaluation of state-of-the-art MLLMs and uncover significant limitations in their spatial reasoning capabilities: even the most powerful MLLMs can answer only about half of the test cases, whereas human participants achieve over 90\% accuracy. In addition to VQA tasks, we evaluate MLLMs' abilities to generate LEGO images following assembly illustrations. Our experiments show that only Gemini-2.0-Flash and GPT-4o exhibit a limited ability to follow these instructions, while other MLLMs either replicate the input image or generate completely irrelevant outputs. Overall, LEGO-Puzzles exposes critical deficiencies in existing MLLMs' spatial understanding and sequential reasoning capabilities, and underscores the need for further advancements in multimodal spatial reasoning.

3DSRBench: A Comprehensive 3D Spatial Reasoning Benchmark

3D spatial reasoning is the ability to analyze and interpret the positions, orientations, and spatial relationships of objects within the 3D space. This allows models to develop a comprehensive understanding of the 3D scene, enabling their applicability to a broader range of areas, such as autonomous navigation, robotics, and AR/VR. While large multi-modal models (LMMs) have achieved remarkable progress in a wide range of image and video understanding tasks, their capabilities to perform 3D spatial reasoning on diverse natural images are less studied. In this work we present the first comprehensive 3D spatial reasoning benchmark, 3DSRBench, with 2,772 manually annotated visual question-answer pairs across 12 question types. We conduct robust and thorough evaluation of 3D spatial reasoning capabilities by balancing the data distribution and adopting a novel FlipEval strategy. To further study the robustness of 3D spatial reasoning w.r.t. camera 3D viewpoints, our 3DSRBench includes two subsets with 3D spatial reasoning questions on paired images with common and uncommon viewpoints. We benchmark a wide range of open-sourced and proprietary LMMs, uncovering their limitations in various aspects of 3D awareness, such as height, orientation, location, and multi-object reasoning, as well as their degraded performance on images with uncommon camera viewpoints. Our 3DSRBench provide valuable findings and insights about the future development of LMMs with strong 3D reasoning capabilities. Our project page and dataset is available https://3dsrbench.github.io.

Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing

As textual reasoning with large language models (LLMs) has advanced significantly, there has been growing interest in enhancing the multimodal reasoning capabilities of large vision-language models (LVLMs). However, existing methods primarily approach multimodal reasoning in a straightforward, text-centric manner, where both reasoning and answer derivation are conducted purely through text, with the only difference being the presence of multimodal input. As a result, these methods often encounter fundamental limitations in spatial reasoning tasks that demand precise geometric understanding and continuous spatial tracking-capabilities that humans achieve through mental visualization and manipulation. To address the limitations, we propose drawing to reason in space, a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space. By equipping models with basic drawing operations, including annotating bounding boxes and drawing auxiliary lines, we empower them to express and analyze spatial relationships through direct visual manipulation, meanwhile avoiding the performance ceiling imposed by specialized perception tools in previous tool-integrated reasoning approaches. To cultivate this capability, we develop a three-stage training framework: cold-start training with synthetic data to establish basic drawing abilities, reflective rejection sampling to enhance self-reflection behaviors, and reinforcement learning to directly optimize for target rewards. Extensive experiments demonstrate that our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks, involving maze navigation, static spatial reasoning, video-based reasoning, and multi-view-based reasoning tasks, with an average improvement of 18.4%.

Advancing Spatial Reasoning in Large Language Models: An In-Depth Evaluation and Enhancement Using the StepGame Benchmark

Artificial intelligence (AI) has made remarkable progress across various domains, with large language models like ChatGPT gaining substantial attention for their human-like text-generation capabilities. Despite these achievements, spatial reasoning remains a significant challenge for these models. Benchmarks like StepGame evaluate AI spatial reasoning, where ChatGPT has shown unsatisfactory performance. However, the presence of template errors in the benchmark has an impact on the evaluation results. Thus there is potential for ChatGPT to perform better if these template errors are addressed, leading to more accurate assessments of its spatial reasoning capabilities. In this study, we refine the StepGame benchmark, providing a more accurate dataset for model evaluation. We analyze GPT's spatial reasoning performance on the rectified benchmark, identifying proficiency in mapping natural language text to spatial relations but limitations in multi-hop reasoning. We provide a flawless solution to the benchmark by combining template-to-relation mapping with logic-based reasoning. This combination demonstrates proficiency in performing qualitative reasoning on StepGame without encountering any errors. We then address the limitations of GPT models in spatial reasoning. We deploy Chain-of-thought and Tree-of-thoughts prompting strategies, offering insights into GPT's ``cognitive process", and achieving remarkable improvements in accuracy. Our investigation not only sheds light on model deficiencies but also proposes enhancements, contributing to the advancement of AI with more robust spatial reasoning capabilities.

MARBLE: A Hard Benchmark for Multimodal Spatial Reasoning and Planning

The ability to process information from multiple modalities and to reason through it step-by-step remains a critical challenge in advancing artificial intelligence. However, existing reasoning benchmarks focus on text-only reasoning, or employ multimodal questions that can be answered by directly retrieving information from a non-text modality. Thus, complex reasoning remains poorly understood in multimodal domains. Here, we present MARBLE, a challenging multimodal reasoning benchmark that is designed to scrutinize multimodal language models (MLLMs) in their ability to carefully reason step-by-step through complex multimodal problems and environments. MARBLE is composed of two highly challenging tasks, M-Portal and M-Cube, that require the crafting and understanding of multistep plans under spatial, visual, and physical constraints. We find that current MLLMs perform poorly on MARBLE -- all the 12 advanced models obtain near-random performance on M-Portal and 0% accuracy on M-Cube. Only in simplified subtasks some models outperform the random baseline, indicating that complex reasoning is still a challenge for existing MLLMs. Moreover, we show that perception remains a bottleneck, where MLLMs occasionally fail to extract information from the visual inputs. By shedding a light on the limitations of MLLMs, we hope that MARBLE will spur the development of the next generation of models with the ability to reason and plan across many, multimodal reasoning steps.

NuScenes-SpatialQA: A Spatial Understanding and Reasoning Benchmark for Vision-Language Models in Autonomous Driving

Recent advancements in Vision-Language Models (VLMs) have demonstrated strong potential for autonomous driving tasks. However, their spatial understanding and reasoning-key capabilities for autonomous driving-still exhibit significant limitations. Notably, none of the existing benchmarks systematically evaluate VLMs' spatial reasoning capabilities in driving scenarios. To fill this gap, we propose NuScenes-SpatialQA, the first large-scale ground-truth-based Question-Answer (QA) benchmark specifically designed to evaluate the spatial understanding and reasoning capabilities of VLMs in autonomous driving. Built upon the NuScenes dataset, the benchmark is constructed through an automated 3D scene graph generation pipeline and a QA generation pipeline. The benchmark systematically evaluates VLMs' performance in both spatial understanding and reasoning across multiple dimensions. Using this benchmark, we conduct extensive experiments on diverse VLMs, including both general and spatial-enhanced models, providing the first comprehensive evaluation of their spatial capabilities in autonomous driving. Surprisingly, the experimental results show that the spatial-enhanced VLM outperforms in qualitative QA but does not demonstrate competitiveness in quantitative QA. In general, VLMs still face considerable challenges in spatial understanding and reasoning.

SSR: Enhancing Depth Perception in Vision-Language Models via Rationale-Guided Spatial Reasoning

Despite impressive advancements in Visual-Language Models (VLMs) for multi-modal tasks, their reliance on RGB inputs limits precise spatial understanding. Existing methods for integrating spatial cues, such as point clouds or depth, either require specialized sensors or fail to effectively exploit depth information for higher-order reasoning. To this end, we propose a novel Spatial Sense and Reasoning method, dubbed SSR, a novel framework that transforms raw depth data into structured, interpretable textual rationales. These textual rationales serve as meaningful intermediate representations to significantly enhance spatial reasoning capabilities. Additionally, we leverage knowledge distillation to compress the generated rationales into compact latent embeddings, which facilitate resource-efficient and plug-and-play integration into existing VLMs without retraining. To enable comprehensive evaluation, we introduce a new dataset named SSR-CoT, a million-scale visual-language reasoning dataset enriched with intermediate spatial reasoning annotations, and present SSRBench, a comprehensive multi-task benchmark. Extensive experiments on multiple benchmarks demonstrate SSR substantially improves depth utilization and enhances spatial reasoning, thereby advancing VLMs toward more human-like multi-modal understanding. Our project page is at https://yliu-cs.github.io/SSR.

How Far are VLMs from Visual Spatial Intelligence? A Benchmark-Driven Perspective

Visual Spatial Reasoning (VSR) is a core human cognitive ability and a critical requirement for advancing embodied intelligence and autonomous systems. Despite recent progress in Vision-Language Models (VLMs), achieving human-level VSR remains highly challenging due to the complexity of representing and reasoning over three-dimensional space. In this paper, we present a systematic investigation of VSR in VLMs, encompassing a review of existing methodologies across input modalities, model architectures, training strategies, and reasoning mechanisms. Furthermore, we categorize spatial intelligence into three levels of capability, ie, basic perception, spatial understanding, spatial planning, and curate SIBench, a spatial intelligence benchmark encompassing nearly 20 open-source datasets across 23 task settings. Experiments with state-of-the-art VLMs reveal a pronounced gap between perception and reasoning, as models show competence in basic perceptual tasks but consistently underperform in understanding and planning tasks, particularly in numerical estimation, multi-view reasoning, temporal dynamics, and spatial imagination. These findings underscore the substantial challenges that remain in achieving spatial intelligence, while providing both a systematic roadmap and a comprehensive benchmark to drive future research in the field. The related resources of this study are accessible at https://sibench.github.io/Awesome-Visual-Spatial-Reasoning/.

TopViewRS: Vision-Language Models as Top-View Spatial Reasoners

Top-view perspective denotes a typical way in which humans read and reason over different types of maps, and it is vital for localization and navigation of humans as well as of `non-human' agents, such as the ones backed by large Vision-Language Models (VLMs). Nonetheless, spatial reasoning capabilities of modern VLMs remain unattested and underexplored. In this work, we thus study their capability to understand and reason over spatial relations from the top view. The focus on top view also enables controlled evaluations at different granularity of spatial reasoning; we clearly disentangle different abilities (e.g., recognizing particular objects versus understanding their relative positions). We introduce the TopViewRS (Top-View Reasoning in Space) dataset, consisting of 11,384 multiple-choice questions with either realistic or semantic top-view map as visual input. We then use it to study and evaluate VLMs across 4 perception and reasoning tasks with different levels of complexity. Evaluation of 10 representative open- and closed-source VLMs reveals the gap of more than 50% compared to average human performance, and it is even lower than the random baseline in some cases. Although additional experiments show that Chain-of-Thought reasoning can boost model capabilities by 5.82% on average, the overall performance of VLMs remains limited. Our findings underscore the critical need for enhanced model capability in top-view spatial reasoning and set a foundation for further research towards human-level proficiency of VLMs in real-world multimodal tasks.

Why Do MLLMs Struggle with Spatial Understanding? A Systematic Analysis from Data to Architecture

Spatial understanding is essential for Multimodal Large Language Models (MLLMs) to support perception, reasoning, and planning in embodied environments. Despite recent progress, existing studies reveal that MLLMs still struggle with spatial understanding. However, existing research lacks a comprehensive and systematic evaluation of these limitations, often restricted to isolated scenarios, such as single-view or video. In this work, we present a systematic analysis of spatial understanding from both data and architectural perspectives across three representative scenarios: single-view, multi-view, and video. We propose a benchmark named MulSeT (Multi-view Spatial Understanding Tasks), and design a series of experiments to analyze the spatial reasoning capabilities of MLLMs. From the data perspective, the performance of spatial understanding converges quickly as the training data increases, and the upper bound is relatively low, especially for tasks that require spatial imagination. This indicates that merely expanding training data is insufficient to achieve satisfactory performance. From the architectural perspective, we find that spatial understanding relies more heavily on the positional encoding within the visual encoder than within the language model, in both cascaded and native MLLMs. Moreover, we explore reasoning injection and envision future improvements through architectural design to optimize spatial understanding. These insights shed light on the limitations of current MLLMs and suggest new directions for improving spatial reasoning capabilities through data scaling and architectural tuning.

LVLM_CSP: Accelerating Large Vision Language Models via Clustering, Scattering, and Pruning for Reasoning Segmentation

Large Vision Language Models (LVLMs) have been widely adopted to guide vision foundation models in performing reasoning segmentation tasks, achieving impressive performance. However, the substantial computational overhead associated with LVLMs presents a new challenge. The primary source of this computational cost arises from processing hundreds of image tokens. Therefore, an effective strategy to mitigate such overhead is to reduce the number of image tokens, a process known as image token pruning. Previous studies on image token pruning for LVLMs have primarily focused on high level visual understanding tasks, such as visual question answering and image captioning. In contrast, guiding vision foundation models to generate accurate visual masks based on textual queries demands precise semantic and spatial reasoning capabilities. Consequently, pruning methods must carefully control individual image tokens throughout the LVLM reasoning process. Our empirical analysis reveals that existing methods struggle to adequately balance reductions in computational overhead with the necessity to maintain high segmentation accuracy. In this work, we propose LVLM_CSP, a novel training free visual token pruning method specifically designed for LVLM based reasoning segmentation tasks. LVLM_CSP consists of three stages: clustering, scattering, and pruning. Initially, the LVLM performs coarse-grained visual reasoning using a subset of selected image tokens. Next, fine grained reasoning is conducted, and finally, most visual tokens are pruned in the last stage. Extensive experiments demonstrate that LVLM_CSP achieves a 65% reduction in image token inference FLOPs with virtually no accuracy degradation, and a 70% reduction with only a minor 1% drop in accuracy on the 7B LVLM.

InfiGUI-R1: Advancing Multimodal GUI Agents from Reactive Actors to Deliberative Reasoners

Multimodal Large Language Models (MLLMs) have powered Graphical User Interface (GUI) Agents, showing promise in automating tasks on computing devices. Recent works have begun exploring reasoning in GUI tasks with encouraging results. However, many current approaches rely on manually designed reasoning templates, which may result in reasoning that is not sufficiently robust and adaptive for complex GUI environments. Meanwhile, some existing agents continue to operate as Reactive Actors, relying primarily on implicit reasoning that may lack sufficient depth for GUI tasks demanding planning and error recovery. We argue that advancing these agents requires a shift from reactive acting towards acting based on deliberate reasoning. To facilitate this transformation, we introduce InfiGUI-R1, an MLLM-based GUI agent developed through our Actor2Reasoner framework, a reasoning-centric, two-stage training approach designed to progressively evolve agents from Reactive Actors to Deliberative Reasoners. The first stage, Reasoning Injection, focuses on establishing a basic reasoner. We employ Spatial Reasoning Distillation to transfer cross-modal spatial reasoning capabilities from teacher models to MLLMs through trajectories with explicit reasoning steps, enabling models to integrate GUI visual-spatial information with logical reasoning before action generation. The second stage, Deliberation Enhancement, refines the basic reasoner into a deliberative one using Reinforcement Learning. This stage introduces two approaches: Sub-goal Guidance, which rewards models for generating accurate intermediate sub-goals, and Error Recovery Scenario Construction, which creates failure-and-recovery training scenarios from identified prone-to-error steps. Experimental results show InfiGUI-R1 achieves strong performance in GUI grounding and trajectory tasks. Resources at https://github.com/Reallm-Labs/InfiGUI-R1.

Geometry-Editable and Appearance-Preserving Object Compositon

General object composition (GOC) aims to seamlessly integrate a target object into a background scene with desired geometric properties, while simultaneously preserving its fine-grained appearance details. Recent approaches derive semantic embeddings and integrate them into advanced diffusion models to enable geometry-editable generation. However, these highly compact embeddings encode only high-level semantic cues and inevitably discard fine-grained appearance details. We introduce a Disentangled Geometry-editable and Appearance-preserving Diffusion (DGAD) model that first leverages semantic embeddings to implicitly capture the desired geometric transformations and then employs a cross-attention retrieval mechanism to align fine-grained appearance features with the geometry-edited representation, facilitating both precise geometry editing and faithful appearance preservation in object composition. Specifically, DGAD builds on CLIP/DINO-derived and reference networks to extract semantic embeddings and appearance-preserving representations, which are then seamlessly integrated into the encoding and decoding pipelines in a disentangled manner. We first integrate the semantic embeddings into pre-trained diffusion models that exhibit strong spatial reasoning capabilities to implicitly capture object geometry, thereby facilitating flexible object manipulation and ensuring effective editability. Then, we design a dense cross-attention mechanism that leverages the implicitly learned object geometry to retrieve and spatially align appearance features with their corresponding regions, ensuring faithful appearance consistency. Extensive experiments on public benchmarks demonstrate the effectiveness of the proposed DGAD framework.

RotBench: Evaluating Multimodal Large Language Models on Identifying Image Rotation

We investigate to what extent Multimodal Large Language Models (MLLMs) can accurately identify the orientation of input images rotated 0{\deg}, 90{\deg}, 180{\deg}, and 270{\deg}. This task demands robust visual reasoning capabilities to detect rotational cues and contextualize spatial relationships within images, regardless of their orientation. To evaluate MLLMs on these abilities, we introduce RotBench -- a 350-image manually-filtered benchmark comprising lifestyle, portrait, and landscape images. Despite the relatively simple nature of this task, we show that several state-of-the-art open and proprietary MLLMs, including GPT-5, o3, and Gemini-2.5-Pro, do not reliably identify rotation in input images. Providing models with auxiliary information -- including captions, depth maps, and more -- or using chain-of-thought prompting offers only small and inconsistent improvements. Our results indicate that most models are able to reliably identify right-side-up (0{\deg}) images, while certain models are able to identify upside-down (180{\deg}) images. None can reliably distinguish between 90{\deg} and 270{\deg}. Simultaneously showing the image rotated in different orientations leads to moderate performance gains for reasoning models, while a modified setup using voting improves the performance of weaker models. We further show that fine-tuning does not improve models' ability to distinguish 90{\deg} and 270{\deg} rotations, despite substantially improving the identification of 180{\deg} images. Together, these results reveal a significant gap between MLLMs' spatial reasoning capabilities and human perception in identifying rotation.

APT: Architectural Planning and Text-to-Blueprint Construction Using Large Language Models for Open-World Agents

We present APT, an advanced Large Language Model (LLM)-driven framework that enables autonomous agents to construct complex and creative structures within the Minecraft environment. Unlike previous approaches that primarily concentrate on skill-based open-world tasks or rely on image-based diffusion models for generating voxel-based structures, our method leverages the intrinsic spatial reasoning capabilities of LLMs. By employing chain-of-thought decomposition along with multimodal inputs, the framework generates detailed architectural layouts and blueprints that the agent can execute under zero-shot or few-shot learning scenarios. Our agent incorporates both memory and reflection modules to facilitate lifelong learning, adaptive refinement, and error correction throughout the building process. To rigorously evaluate the agent's performance in this emerging research area, we introduce a comprehensive benchmark consisting of diverse construction tasks designed to test creativity, spatial reasoning, adherence to in-game rules, and the effective integration of multimodal instructions. Experimental results using various GPT-based LLM backends and agent configurations demonstrate the agent's capacity to accurately interpret extensive instructions involving numerous items, their positions, and orientations. The agent successfully produces complex structures complete with internal functionalities such as Redstone-powered systems. A/B testing indicates that the inclusion of a memory module leads to a significant increase in performance, emphasizing its role in enabling continuous learning and the reuse of accumulated experience. Additionally, the agent's unexpected emergence of scaffolding behavior highlights the potential of future LLM-driven agents to utilize subroutine planning and leverage the emergence ability of LLMs to autonomously develop human-like problem-solving techniques.

SOLIDGEO: Measuring Multimodal Spatial Math Reasoning in Solid Geometry

Geometry is a fundamental branch of mathematics and plays a crucial role in evaluating the reasoning capabilities of multimodal large language models (MLLMs). However, existing multimodal mathematics benchmarks mainly focus on plane geometry and largely ignore solid geometry, which requires spatial reasoning and is more challenging than plane geometry. To address this critical gap, we introduce SolidGeo, the first large-scale benchmark specifically designed to evaluate the performance of MLLMs on mathematical reasoning tasks in solid geometry. SolidGeo consists of 3,113 real-world K-12 and competition-level problems, each paired with visual context and annotated with difficulty levels and fine-grained solid geometry categories. Our benchmark covers a wide range of 3D reasoning subjects such as projection, unfolding, spatial measurement, and spatial vector, offering a rigorous testbed for assessing solid geometry. Through extensive experiments, we observe that MLLMs encounter substantial challenges in solid geometry math tasks, with a considerable performance gap relative to human capabilities on SolidGeo. Moreover, we analyze the performance, inference efficiency and error patterns of various models, offering insights into the solid geometric mathematical reasoning capabilities of MLLMs. We hope SolidGeo serves as a catalyst for advancing MLLMs toward deeper geometric reasoning and spatial intelligence.

EmbRACE-3K: Embodied Reasoning and Action in Complex Environments

Recent advanced vision-language models(VLMs) have demonstrated strong performance on passive, offline image and video understanding tasks. However, their effectiveness in embodied settings, which require online interaction and active scene understanding remains limited. In such scenarios, an agent perceives the environment from a first-person perspective, with each action dynamically shaping subsequent observations. Even state-of-the-art models such as GPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro struggle in open-environment interactions, exhibiting clear limitations in spatial reasoning and long-horizon planning. To address this gap, we introduce EmRACE-3K, a dataset of over 3,000 language-guided tasks situated in diverse, photorealistic environments constructed using Unreal Engine and the UnrealCV-Zoo framework. The tasks encompass a wide range of embodied challenges, including navigation, object manipulation, and multi-stage goal execution. Each task unfolds as a multi-step trajectory, pairing first-person visual observations with high-level instructions, grounded actions, and natural language rationales that express the agent's intent at every step. Using EmRACE-3K, we establish a benchmark to evaluate the embodied reasoning capabilities of VLMs across three key dimensions: Exploration, Dynamic Spatial-Semantic Reasoning, and Multi-stage Goal Execution. In zero-shot settings, all models achieve success rates below 20%, underscoring the challenge posed by our benchmark and the current limitations of VLMs in interactive environments. To demonstrate the utility of EmRACE-3K, we further fine-tune Qwen2.5-VL-7B using supervised learning followed by reinforcement learning. This approach yields substantial improvements across all three challenge categories, highlighting the dataset's effectiveness in enabling the development of embodied reasoning capabilities.

SATORI-R1: Incentivizing Multimodal Reasoning with Spatial Grounding and Verifiable Rewards

DeepSeek-R1 has demonstrated powerful reasoning capabilities in the text domain through stable reinforcement learning (RL). Recently, in the multimodal domain, works have begun to directly apply RL to generate R1-like free-form reasoning for Visual Question Answering (VQA) tasks. However, multimodal tasks share an intrinsically different nature from textual tasks, which heavily rely on the understanding of the input image to solve the problem. Therefore, such free-form reasoning faces two critical limitations in the VQA task: (1) Extended reasoning chains diffuse visual focus away from task-critical regions, degrading answer accuracy. (2) Unverifiable intermediate steps amplify policy-gradient variance and computational costs overhead. To address these issues, in this paper, we introduce SATORI (Spatially Anchored Task Optimization with ReInforcement Learning), which decomposes VQA into three verifiable stages, including global image captioning, region localization, and answer prediction, each supplying explicit reward signals. Furthermore, we also introduce VQA-Verify, a 12k dataset annotated with answer-aligned captions and bounding-boxes to facilitate training. Experiments demonstrate consistent performance improvements across seven VQA benchmarks, achieving up to 15.7% improvement in accuracy in accuracy compared to the R1-like baseline. Our analysis of the attention map confirms enhanced focus on critical regions, which brings improvements in accuracy. Our code is available at https://github.com/justairr/SATORI-R1.

Scalable Multi-Task Reinforcement Learning for Generalizable Spatial Intelligence in Visuomotor Agents

While Reinforcement Learning (RL) has achieved remarkable success in language modeling, its triumph hasn't yet fully translated to visuomotor agents. A primary challenge in RL models is their tendency to overfit specific tasks or environments, thereby hindering the acquisition of generalizable behaviors across diverse settings. This paper provides a preliminary answer to this challenge by demonstrating that RL-finetuned visuomotor agents in Minecraft can achieve zero-shot generalization to unseen worlds. Specifically, we explore RL's potential to enhance generalizable spatial reasoning and interaction capabilities in 3D worlds. To address challenges in multi-task RL representation, we analyze and establish cross-view goal specification as a unified multi-task goal space for visuomotor policies. Furthermore, to overcome the significant bottleneck of manual task design, we propose automated task synthesis within the highly customizable Minecraft environment for large-scale multi-task RL training, and we construct an efficient distributed RL framework to support this. Experimental results show RL significantly boosts interaction success rates by 4times and enables zero-shot generalization of spatial reasoning across diverse environments, including real-world settings. Our findings underscore the immense potential of RL training in 3D simulated environments, especially those amenable to large-scale task generation, for significantly advancing visuomotor agents' spatial reasoning.

Whiteboard-of-Thought: Thinking Step-by-Step Across Modalities

When presented with questions involving visual thinking, humans naturally switch reasoning modalities, often forming mental images or drawing visual aids. Large language models have shown promising results in arithmetic and symbolic reasoning by expressing intermediate reasoning in text as a chain of thought, yet struggle to extend this capability to answer text queries that are easily solved by visual reasoning, even with extensive multimodal pretraining. We introduce a simple method, whiteboard-of-thought prompting, to unlock the visual reasoning capabilities of multimodal large language models across modalities. Whiteboard-of-thought prompting provides multimodal large language models with a metaphorical `whiteboard' to draw out reasoning steps as images, then returns these images back to the model for further processing. We find this can be accomplished with no demonstrations or specialized modules, instead leveraging models' existing ability to write code with libraries such as Matplotlib and Turtle. This simple approach shows state-of-the-art results on four difficult natural language tasks that involve visual and spatial reasoning. We identify multiple settings where GPT-4o using chain-of-thought fails dramatically, including more than one where it achieves 0% accuracy, while whiteboard-of-thought enables up to 92% accuracy in these same settings. We present a detailed exploration of where the technique succeeds as well as its sources of error.

Spatial Reasoning and Planning for Deep Embodied Agents

Humans can perform complex tasks with long-term objectives by planning, reasoning, and forecasting outcomes of actions. For embodied agents to achieve similar capabilities, they must gain knowledge of the environment transferable to novel scenarios with a limited budget of additional trial and error. Learning-based approaches, such as deep RL, can discover and take advantage of inherent regularities and characteristics of the application domain from data, and continuously improve their performances, however at a cost of large amounts of training data. This thesis explores the development of data-driven techniques for spatial reasoning and planning tasks, focusing on enhancing learning efficiency, interpretability, and transferability across novel scenarios. Four key contributions are made. 1) CALVIN, a differential planner that learns interpretable models of the world for long-term planning. It successfully navigated partially observable 3D environments, such as mazes and indoor rooms, by learning the rewards and state transitions from expert demonstrations. 2) SOAP, an RL algorithm that discovers options unsupervised for long-horizon tasks. Options segment a task into subtasks and enable consistent execution of the subtask. SOAP showed robust performances on history-conditional corridor tasks as well as classical benchmarks such as Atari. 3) LangProp, a code optimisation framework using LLMs to solve embodied agent problems that require reasoning by treating code as learnable policies. The framework successfully generated interpretable code with comparable or superior performance to human-written experts in the CARLA autonomous driving benchmark. 4) Voggite, an embodied agent with a vision-to-action transformer backend that solves complex tasks in Minecraft. It achieved third place in the MineRL BASALT Competition by identifying action triggers to segment tasks into multiple stages.

Reframing Spatial Reasoning Evaluation in Language Models: A Real-World Simulation Benchmark for Qualitative Reasoning

Spatial reasoning plays a vital role in both human cognition and machine intelligence, prompting new research into language models' (LMs) capabilities in this regard. However, existing benchmarks reveal shortcomings in evaluating qualitative spatial reasoning (QSR). These benchmarks typically present oversimplified scenarios or unclear natural language descriptions, hindering effective evaluation. We present a novel benchmark for assessing QSR in LMs, which is grounded in realistic 3D simulation data, offering a series of diverse room layouts with various objects and their spatial relationships. This approach provides a more detailed and context-rich narrative for spatial reasoning evaluation, diverging from traditional, toy-task-oriented scenarios. Our benchmark encompasses a broad spectrum of qualitative spatial relationships, including topological, directional, and distance relations. These are presented with different viewing points, varied granularities, and density of relation constraints to mimic real-world complexities. A key contribution is our logic-based consistency-checking tool, which enables the assessment of multiple plausible solutions, aligning with real-world scenarios where spatial relationships are often open to interpretation. Our benchmark evaluation of advanced LMs reveals their strengths and limitations in spatial reasoning. They face difficulties with multi-hop spatial reasoning and interpreting a mix of different view descriptions, pointing to areas for future improvement.

SpatialReasoner: Towards Explicit and Generalizable 3D Spatial Reasoning

Despite recent advances on multi-modal models, 3D spatial reasoning remains a challenging task for state-of-the-art open-source and proprietary models. Recent studies explore data-driven approaches and achieve enhanced spatial reasoning performance by fine-tuning models on 3D-related visual question-answering data. However, these methods typically perform spatial reasoning in an implicit manner and often fail on questions that are trivial to humans, even with long chain-of-thought reasoning. In this work, we introduce SpatialReasoner, a novel large vision-language model (LVLM) that addresses 3D spatial reasoning with explicit 3D representations shared between multiple stages--3D perception, computation, and reasoning. Explicit 3D representations provide a coherent interface that supports advanced 3D spatial reasoning and improves the generalization ability to novel question types. Furthermore, by analyzing the explicit 3D representations in multi-step reasoning traces of SpatialReasoner, we study the factual errors and identify key shortcomings of current LVLMs. Results show that our SpatialReasoner achieves improved performance on a variety of spatial reasoning benchmarks, outperforming Gemini 2.0 by 9.2% on 3DSRBench, and generalizes better when evaluating on novel 3D spatial reasoning questions. Our study bridges the 3D parsing capabilities of prior visual foundation models with the powerful reasoning abilities of large language models, opening new directions for 3D spatial reasoning.

Spatial-MLLM: Boosting MLLM Capabilities in Visual-based Spatial Intelligence

Recent advancements in Multimodal Large Language Models (MLLMs) have significantly enhanced performance on 2D visual tasks. However, improving their spatial intelligence remains a challenge. Existing 3D MLLMs always rely on additional 3D or 2.5D data to incorporate spatial awareness, restricting their utility in scenarios with only 2D inputs, such as images or videos. In this paper, we present Spatial-MLLM, a novel framework for visual-based spatial reasoning from purely 2D observations. Unlike conventional video MLLMs which rely on CLIP-based visual encoders optimized for semantic understanding, our key insight is to unleash the strong structure prior from the feed-forward visual geometry foundation model. Specifically, we propose a dual-encoder architecture: a pretrained 2D visual encoder to extract semantic features, and a spatial encoder-initialized from the backbone of the visual geometry model-to extract 3D structure features. A connector then integrates both features into unified visual tokens for enhanced spatial understanding. Furthermore, we propose a space-aware frame sampling strategy at inference time, which selects the spatially informative frames of a video sequence, ensuring that even under limited token length, the model focuses on frames critical for spatial reasoning. Beyond architecture improvements, we construct the Spatial-MLLM-120k dataset and train the model on it using supervised fine-tuning and GRPO. Extensive experiments on various real-world datasets demonstrate that our spatial-MLLM achieves state-of-the-art performance in a wide range of visual-based spatial understanding and reasoning tasks. Project page: https://diankun-wu.github.io/Spatial-MLLM/.

MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models

Recent advancements in foundation models have enhanced AI systems' capabilities in autonomous tool usage and reasoning. However, their ability in location or map-based reasoning - which improves daily life by optimizing navigation, facilitating resource discovery, and streamlining logistics - has not been systematically studied. To bridge this gap, we introduce MapEval, a benchmark designed to assess diverse and complex map-based user queries with geo-spatial reasoning. MapEval features three task types (textual, API-based, and visual) that require collecting world information via map tools, processing heterogeneous geo-spatial contexts (e.g., named entities, travel distances, user reviews or ratings, images), and compositional reasoning, which all state-of-the-art foundation models find challenging. Comprising 700 unique multiple-choice questions about locations across 180 cities and 54 countries, MapEval evaluates foundation models' ability to handle spatial relationships, map infographics, travel planning, and navigation challenges. Using MapEval, we conducted a comprehensive evaluation of 28 prominent foundation models. While no single model excelled across all tasks, Claude-3.5-Sonnet, GPT-4o, and Gemini-1.5-Pro achieved competitive performance overall. However, substantial performance gaps emerged, particularly in MapEval, where agents with Claude-3.5-Sonnet outperformed GPT-4o and Gemini-1.5-Pro by 16% and 21%, respectively, and the gaps became even more amplified when compared to open-source LLMs. Our detailed analyses provide insights into the strengths and weaknesses of current models, though all models still fall short of human performance by more than 20% on average, struggling with complex map images and rigorous geo-spatial reasoning. This gap highlights MapEval's critical role in advancing general-purpose foundation models with stronger geo-spatial understanding.

Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs

Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning. This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP). We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) direct prompting baseline, (2) Facts+Rules prompting, and (3) DSPy-based LLM+ASP pipeline with iterative refinement. Our experimental results demonstrate that the LLM+ASP pipeline significantly outperforms baseline methods, achieving an average 82% accuracy on StepGame and 69% on SparQA, marking improvements of 40-50% and 8-15% respectively over direct prompting. The success stems from three key innovations: (1) effective separation of semantic parsing and logical reasoning through a modular pipeline, (2) iterative feedback mechanism between LLMs and ASP solvers that improves program rate, and (3) robust error handling that addresses parsing, grounding, and solving failures. Additionally, we propose Facts+Rules as a lightweight alternative that achieves comparable performance on complex SparQA dataset, while reducing computational overhead.Our analysis across different LLM architectures (Deepseek, Llama3-70B, GPT-4.0 mini) demonstrates the framework's generalizability and provides insights into the trade-offs between implementation complexity and reasoning capability, contributing to the development of more interpretable and reliable AI systems.

SoFar: Language-Grounded Orientation Bridges Spatial Reasoning and Object Manipulation

Spatial intelligence is a critical component of embodied AI, promoting robots to understand and interact with their environments. While recent advances have enhanced the ability of VLMs to perceive object locations and positional relationships, they still lack the capability to precisely understand object orientations-a key requirement for tasks involving fine-grained manipulations. Addressing this limitation not only requires geometric reasoning but also an expressive and intuitive way to represent orientation. In this context, we propose that natural language offers a more flexible representation space than canonical frames, making it particularly suitable for instruction-following robotic systems. In this paper, we introduce the concept of semantic orientation, which defines object orientations using natural language in a reference-frame-free manner (e.g., the ''plug-in'' direction of a USB or the ''handle'' direction of a knife). To support this, we construct OrienText300K, a large-scale dataset of 3D models annotated with semantic orientations that link geometric understanding to functional semantics. By integrating semantic orientation into a VLM system, we enable robots to generate manipulation actions with both positional and orientational constraints. Extensive experiments in simulation and real world demonstrate that our approach significantly enhances robotic manipulation capabilities, e.g., 48.7% accuracy on Open6DOR and 74.9% accuracy on SIMPLER.

Towards a Deeper Understanding of Reasoning Capabilities in Large Language Models

While large language models demonstrate impressive performance on static benchmarks, the true potential of large language models as self-learning and reasoning agents in dynamic environments remains unclear. This study systematically evaluates the efficacy of self-reflection, heuristic mutation, and planning as prompting techniques to test the adaptive capabilities of agents. We conduct experiments with various open-source language models in dynamic environments and find that larger models generally outperform smaller ones, but that strategic prompting can close this performance gap. Second, a too-long prompt can negatively impact smaller models on basic reactive tasks, while larger models show more robust behaviour. Third, advanced prompting techniques primarily benefit smaller models on complex games, but offer less improvement for already high-performing large language models. Yet, we find that advanced reasoning methods yield highly variable outcomes: while capable of significantly improving performance when reasoning and decision-making align, they also introduce instability and can lead to big performance drops. Compared to human performance, our findings reveal little evidence of true emergent reasoning. Instead, large language model performance exhibits persistent limitations in crucial areas such as planning, reasoning, and spatial coordination, suggesting that current-generation large language models still suffer fundamental shortcomings that may not be fully overcome through self-reflective prompting alone. Reasoning is a multi-faceted task, and while reasoning methods like Chain of thought improves multi-step reasoning on math word problems, our findings using dynamic benchmarks highlight important shortcomings in general reasoning capabilities, indicating a need to move beyond static benchmarks to capture the complexity of reasoning.

LR$^2$Bench: Evaluating Long-chain Reflective Reasoning Capabilities of Large Language Models via Constraint Satisfaction Problems

Recent progress in o1-like models has significantly enhanced the reasoning abilities of Large Language Models (LLMs), empowering them to tackle increasingly complex tasks through reflection capabilities, such as making assumptions, backtracking, and self-refinement. However, effectively evaluating such reflection capabilities remains challenging due to the lack of appropriate benchmarks. To bridge this gap, we introduce LR^2Bench, a novel benchmark designed to evaluate the Long-chain Reflective Reasoning capabilities of LLMs. LR^2Bench comprises 850 samples across six Constraint Satisfaction Problems (CSPs) where reflective reasoning is crucial for deriving solutions that meet all given constraints. Each type of task focuses on distinct constraint patterns, such as knowledge-based, logical, and spatial constraints, providing a comprehensive evaluation of diverse problem-solving scenarios. We conduct extensive evaluation on both conventional models and o1-like models. Our experimental results reveal that even the most advanced reasoning-specific models, such as DeepSeek-R1 and OpenAI o1-preview, struggle with tasks in LR^2Bench, achieving an average Exact Match score of only 20.0% and 23.6%, respectively. These findings underscore the significant room for improvement in the reflective reasoning capabilities of current LLMs. The leaderboard of our benchmark is available at https://huggingface.co/spaces/UltraRonin/LR2Bench

Text-to-CadQuery: A New Paradigm for CAD Generation with Scalable Large Model Capabilities

Computer-aided design (CAD) is fundamental to modern engineering and manufacturing, but creating CAD models still requires expert knowledge and specialized software. Recent advances in large language models (LLMs) open up the possibility of generative CAD, where natural language is directly translated into parametric 3D models. However, most existing methods generate task-specific command sequences that pretrained models cannot directly handle. These sequences must be converted into CAD representations such as CAD vectors before a 3D model can be produced, which requires training models from scratch and adds unnecessary complexity. To tackle this issue, we propose generating CadQuery code directly from text, leveraging the strengths of pretrained LLMs to produce 3D models without intermediate representations, using this Python-based scripting language. Since LLMs already excel at Python generation and spatial reasoning, fine-tuning them on Text-to-CadQuery data proves highly effective. Given that these capabilities typically improve with scale, we hypothesize that larger models will perform better after fine-tuning. To enable this, we augment the Text2CAD dataset with 170,000 CadQuery annotations. We fine-tune six open-source LLMs of varying sizes and observe consistent improvements. Our best model achieves a top-1 exact match of 69.3%, up from 58.8%, and reduces Chamfer Distance by 48.6%. Project page: https://github.com/Text-to-CadQuery/Text-to-CadQuery.

Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning

Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation. Experimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines. Project website: https://tanhuajie.github.io/ReasonRFT

RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics

Spatial understanding is a crucial capability for robots to make grounded decisions based on their environment. This foundational skill enables robots not only to perceive their surroundings but also to reason about and interact meaningfully within the world. In modern robotics, these capabilities are taken on by visual language models, and they face significant challenges when applied to spatial reasoning context due to their training data sources. These sources utilize general-purpose image datasets, and they often lack sophisticated spatial scene understanding capabilities. For example, the datasets do not address reference frame comprehension - spatial relationships require clear contextual understanding, whether from an ego-centric, object-centric, or world-centric perspective, which allow for effective real-world interaction. To address this issue, we introduce RoboSpatial, a large-scale spatial understanding dataset consisting of real indoor and tabletop scenes captured as 3D scans and egocentric images, annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5K 3D scans, and 3M annotated spatial relationships, with paired 2D egocentric images and 3D scans to make it both 2D and 3D ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.

BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games

Large Language Models (LLMs) and Vision Language Models (VLMs) possess extensive knowledge and exhibit promising reasoning abilities; however, they still struggle to perform well in complex, dynamic environments. Real-world tasks require handling intricate interactions, advanced spatial reasoning, long-term planning, and continuous exploration of new strategies-areas in which we lack effective methodologies for comprehensively evaluating these capabilities. To address this gap, we introduce BALROG, a novel benchmark designed to assess the agentic capabilities of LLMs and VLMs through a diverse set of challenging games. Our benchmark incorporates a range of existing reinforcement learning environments with varying levels of difficulty, including tasks that are solvable by non-expert humans in seconds to extremely challenging ones that may take years to master (e.g., the NetHack Learning Environment). We devise fine-grained metrics to measure performance and conduct an extensive evaluation of several popular open-source and closed-source LLMs and VLMs. Our findings indicate that while current models achieve partial success in the easier games, they struggle significantly with more challenging tasks. Notably, we observe severe deficiencies in vision-based decision-making, as models perform worse when visual representations of the environments are provided. We release BALROG as an open and user-friendly benchmark to facilitate future research and development in the agentic community.

OST-Bench: Evaluating the Capabilities of MLLMs in Online Spatio-temporal Scene Understanding

Recent advances in multimodal large language models (MLLMs) have shown remarkable capabilities in integrating vision and language for complex reasoning. While most existing benchmarks evaluate models under offline settings with a fixed set of pre-recorded inputs, we introduce OST-Bench, a benchmark designed to evaluate Online Spatio-Temporal understanding from the perspective of an agent actively exploring a scene. The Online aspect emphasizes the need to process and reason over incrementally acquired observations, while the Spatio-Temporal component requires integrating current visual inputs with historical memory to support dynamic spatial reasoning. OST-Bench better reflects the challenges of real-world embodied perception. Built on an efficient data collection pipeline, OST-Bench consists of 1.4k scenes and 10k question-answer pairs collected from ScanNet, Matterport3D, and ARKitScenes. We evaluate several leading MLLMs on OST-Bench and observe that they fall short on tasks requiring complex spatio-temporal reasoning. Under the online setting, their accuracy declines as the exploration horizon extends and the memory grows. Through further experimental analysis, we identify common error patterns across models and find that both complex clue-based spatial reasoning demands and long-term memory retrieval requirements significantly drop model performance along two separate axes, highlighting the core challenges that must be addressed to improve online embodied reasoning. To foster further research and development in the field, our codes, dataset, and benchmark are available. Our project page is: https://rbler1234.github.io/OSTBench.github.io/

Oedipus and the Sphinx: Benchmarking and Improving Visual Language Models for Complex Graphic Reasoning

Evaluating the performance of visual language models (VLMs) in graphic reasoning tasks has become an important research topic. However, VLMs still show obvious deficiencies in simulating human-level graphic reasoning capabilities, especially in complex graphic reasoning and abstract problem solving, which are less studied and existing studies only focus on simple graphics. To evaluate the performance of VLMs in complex graphic reasoning, we propose ReasonBench, the first evaluation benchmark focused on structured graphic reasoning tasks, which includes 1,613 questions from real-world intelligence tests. ReasonBench covers reasoning dimensions related to location, attribute, quantity, and multi-element tasks, providing a comprehensive evaluation of the performance of VLMs in spatial, relational, and abstract reasoning capabilities. We benchmark 11 mainstream VLMs (including closed-source and open-source models) and reveal significant limitations of current models. Based on these findings, we propose a dual optimization strategy: Diagrammatic Reasoning Chain (DiaCoT) enhances the interpretability of reasoning by decomposing layers, and ReasonTune enhances the task adaptability of model reasoning through training, all of which improves VLM performance by 33.5\%. All experimental data and code are in the repository: https://huggingface.co/datasets/cistine/ReasonBench.

Expand VSR Benchmark for VLLM to Expertize in Spatial Rules

Distinguishing spatial relations is a basic part of human cognition which requires fine-grained perception on cross-instance. Although benchmarks like MME, MMBench and SEED comprehensively have evaluated various capabilities which already include visual spatial reasoning(VSR). There is still a lack of sufficient quantity and quality evaluation and optimization datasets for Vision Large Language Models(VLLMs) specifically targeting visual positional reasoning. To handle this, we first diagnosed current VLLMs with the VSR dataset and proposed a unified test set. We found current VLLMs to exhibit a contradiction of over-sensitivity to language instructions and under-sensitivity to visual positional information. By expanding the original benchmark from two aspects of tunning data and model structure, we mitigated this phenomenon. To our knowledge, we expanded spatially positioned image data controllably using diffusion models for the first time and integrated original visual encoding(CLIP) with other 3 powerful visual encoders(SigLIP, SAM and DINO). After conducting combination experiments on scaling data and models, we obtained a VLLM VSR Expert(VSRE) that not only generalizes better to different instructions but also accurately distinguishes differences in visual positional information. VSRE achieved over a 27\% increase in accuracy on the VSR test set. It becomes a performant VLLM on the position reasoning of both the VSR dataset and relevant subsets of other evaluation benchmarks. We open-sourced the expanded model with data and Appendix at https://github.com/peijin360/vsre and hope it will accelerate advancements in VLLM on VSR learning.

MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM

Multimodal hallucination in multimodal large language models (MLLMs) restricts the correctness of MLLMs. However, multimodal hallucinations are multi-sourced and arise from diverse causes. Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations. This failure constitutes a significant issue and hinders the diagnosis of multimodal reasoning failures within MLLMs. To address this, we propose the {\dataset} benchmark, which isolates reasoning hallucinations by constructing questions where input images are correctly perceived by MLLMs yet reasoning errors persist. {\dataset} introduces multi-granular evaluation metrics: accuracy, factuality, and LLMs hallucination score for hallucination quantification. Our analysis reveals that (1) the model scale, data scale, and training stages significantly affect the degree of logical, fabrication, and factual hallucinations; (2) current MLLMs show no effective improvement on spatial hallucinations caused by misinterpreted spatial relationships, indicating their limited visual reasoning capabilities; and (3) question types correlate with distinct hallucination patterns, highlighting targeted challenges and potential mitigation strategies. To address these challenges, we propose {\method}, a method that combines curriculum reinforcement fine-tuning to encourage models to generate logic-consistent reasoning chains by stepwise reducing learning difficulty, and collaborative hint inference to reduce reasoning complexity. {\method} establishes a baseline on {\dataset}, and reduces the logical hallucinations in original base models.

CoLMDriver: LLM-based Negotiation Benefits Cooperative Autonomous Driving

Vehicle-to-vehicle (V2V) cooperative autonomous driving holds great promise for improving safety by addressing the perception and prediction uncertainties inherent in single-agent systems. However, traditional cooperative methods are constrained by rigid collaboration protocols and limited generalization to unseen interactive scenarios. While LLM-based approaches offer generalized reasoning capabilities, their challenges in spatial planning and unstable inference latency hinder their direct application in cooperative driving. To address these limitations, we propose CoLMDriver, the first full-pipeline LLM-based cooperative driving system, enabling effective language-based negotiation and real-time driving control. CoLMDriver features a parallel driving pipeline with two key components: (i) an LLM-based negotiation module under an actor-critic paradigm, which continuously refines cooperation policies through feedback from previous decisions of all vehicles; and (ii) an intention-guided waypoint generator, which translates negotiation outcomes into executable waypoints. Additionally, we introduce InterDrive, a CARLA-based simulation benchmark comprising 10 challenging interactive driving scenarios for evaluating V2V cooperation. Experimental results demonstrate that CoLMDriver significantly outperforms existing approaches, achieving an 11% higher success rate across diverse highly interactive V2V driving scenarios. Code will be released on https://github.com/cxliu0314/CoLMDriver.

Token-Efficient Long Video Understanding for Multimodal LLMs

Recent advances in video-based multimodal large language models (Video-LLMs) have significantly improved video understanding by processing videos as sequences of image frames. However, many existing methods treat frames independently in the vision backbone, lacking explicit temporal modeling, which limits their ability to capture dynamic patterns and efficiently handle long videos. To address these limitations, we introduce STORM (Spatiotemporal TOken Reduction for Multimodal LLMs), a novel architecture incorporating a dedicated temporal encoder between the image encoder and the LLM. Our temporal encoder leverages the Mamba State Space Model to integrate temporal information into image tokens, generating enriched representations that preserve inter-frame dynamics across the entire video sequence. This enriched encoding not only enhances video reasoning capabilities but also enables effective token reduction strategies, including test-time sampling and training-based temporal and spatial pooling, substantially reducing computational demands on the LLM without sacrificing key temporal information. By integrating these techniques, our approach simultaneously reduces training and inference latency while improving performance, enabling efficient and robust video understanding over extended temporal contexts. Extensive evaluations show that STORM achieves state-of-the-art results across various long video understanding benchmarks (more than 5\% improvement on MLVU and LongVideoBench) while reducing the computation costs by up to 8times and the decoding latency by 2.4-2.9times for the fixed numbers of input frames. Project page is available at https://research.nvidia.com/labs/lpr/storm

Gemini Robotics: Bringing AI into the Physical World

Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.

Preliminary Explorations with GPT-4o(mni) Native Image Generation

Recently, the visual generation ability by GPT-4o(mni) has been unlocked by OpenAI. It demonstrates a very remarkable generation capability with excellent multimodal condition understanding and varied task instructions. In this paper, we aim to explore the capabilities of GPT-4o across various tasks. Inspired by previous study, we constructed a task taxonomy along with a carefully curated set of test samples to conduct a comprehensive qualitative test. Benefiting from GPT-4o's powerful multimodal comprehension, its image-generation process demonstrates abilities surpassing those of traditional image-generation tasks. Thus, regarding the dimensions of model capabilities, we evaluate its performance across six task categories: traditional image generation tasks, discriminative tasks, knowledge-based generation, commonsense-based generation, spatially-aware image generation, and temporally-aware image generation. These tasks not only assess the quality and conditional alignment of the model's outputs but also probe deeper into GPT-4o's understanding of real-world concepts. Our results reveal that GPT-4o performs impressively well in general-purpose synthesis tasks, showing strong capabilities in text-to-image generation, visual stylization, and low-level image processing. However, significant limitations remain in its ability to perform precise spatial reasoning, instruction-grounded generation, and consistent temporal prediction. Furthermore, when faced with knowledge-intensive or domain-specific scenarios, such as scientific illustrations or mathematical plots, the model often exhibits hallucinations, factual errors, or structural inconsistencies. These findings suggest that while GPT-4o marks a substantial advancement in unified multimodal generation, there is still a long way to go before it can be reliably applied to professional or safety-critical domains.

From Concept to Manufacturing: Evaluating Vision-Language Models for Engineering Design

Engineering Design is undergoing a transformative shift with the advent of AI, marking a new era in how we approach product, system, and service planning. Large language models have demonstrated impressive capabilities in enabling this shift. Yet, with text as their only input modality, they cannot leverage the large body of visual artifacts that engineers have used for centuries and are accustomed to. This gap is addressed with the release of multimodal vision language models, such as GPT-4V, enabling AI to impact many more types of tasks. In light of these advancements, this paper presents a comprehensive evaluation of GPT-4V, a vision language model, across a wide spectrum of engineering design tasks, categorized into four main areas: Conceptual Design, System-Level and Detailed Design, Manufacturing and Inspection, and Engineering Education Tasks. Our study assesses GPT-4V's capabilities in design tasks such as sketch similarity analysis, concept selection using Pugh Charts, material selection, engineering drawing analysis, CAD generation, topology optimization, design for additive and subtractive manufacturing, spatial reasoning challenges, and textbook problems. Through this structured evaluation, we not only explore GPT-4V's proficiency in handling complex design and manufacturing challenges but also identify its limitations in complex engineering design applications. Our research establishes a foundation for future assessments of vision language models, emphasizing their immense potential for innovating and enhancing the engineering design and manufacturing landscape. It also contributes a set of benchmark testing datasets, with more than 1000 queries, for ongoing advancements and applications in this field.

Visual Embodied Brain: Let Multimodal Large Language Models See, Think, and Control in Spaces

The remarkable progress of Multimodal Large Language Models (MLLMs) has attracted increasing attention to extend them to physical entities like legged robot. This typically requires MLLMs to not only grasp multimodal understanding abilities, but also integrate visual-spatial reasoning and physical interaction capabilities. Nevertheless,existing methods struggle to unify these capabilities due to their fundamental differences.In this paper, we present the Visual Embodied Brain (VeBrain), a unified framework for perception, reasoning, and control in real world. VeBrain reformulates robotic control into common text-based MLLM tasks in the 2D visual space, thus unifying the objectives and mapping spaces of different tasks. Then, a novel robotic adapter is proposed to convert textual control signals from MLLMs to motion policies of real robots. From the data perspective, we further introduce VeBrain-600k, a high-quality instruction dataset encompassing various capabilities of VeBrain. In VeBrain-600k, we take hundreds of hours to collect, curate and annotate the data, and adopt multimodal chain-of-thought(CoT) to mix the different capabilities into a single conversation. Extensive experiments on 13 multimodal benchmarks and 5 spatial intelligence benchmarks demonstrate the superior performance of VeBrain to existing MLLMs like Qwen2.5-VL. When deployed to legged robots and robotic arms, VeBrain shows strong adaptability, flexibility, and compositional capabilities compared to existing methods. For example, compared to Qwen2.5-VL, VeBrain not only achieves substantial gains on MMVet by +5.6%, but also excels in legged robot tasks with +50% average gains.

Agentic 3D Scene Generation with Spatially Contextualized VLMs

Despite recent advances in multimodal content generation enabled by vision-language models (VLMs), their ability to reason about and generate structured 3D scenes remains largely underexplored. This limitation constrains their utility in spatially grounded tasks such as embodied AI, immersive simulations, and interactive 3D applications. We introduce a new paradigm that enables VLMs to generate, understand, and edit complex 3D environments by injecting a continually evolving spatial context. Constructed from multimodal input, this context consists of three components: a scene portrait that provides a high-level semantic blueprint, a semantically labeled point cloud capturing object-level geometry, and a scene hypergraph that encodes rich spatial relationships, including unary, binary, and higher-order constraints. Together, these components provide the VLM with a structured, geometry-aware working memory that integrates its inherent multimodal reasoning capabilities with structured 3D understanding for effective spatial reasoning. Building on this foundation, we develop an agentic 3D scene generation pipeline in which the VLM iteratively reads from and updates the spatial context. The pipeline features high-quality asset generation with geometric restoration, environment setup with automatic verification, and ergonomic adjustment guided by the scene hypergraph. Experiments show that our framework can handle diverse and challenging inputs, achieving a level of generalization not observed in prior work. Further results demonstrate that injecting spatial context enables VLMs to perform downstream tasks such as interactive scene editing and path planning, suggesting strong potential for spatially intelligent systems in computer graphics, 3D vision, and embodied applications.

Show, Don't Tell: Evaluating Large Language Models Beyond Textual Understanding with ChildPlay

We developed a benchmark set to assess the generalization of state-of-the-art large language models on problems beyond linguistic tasks and evaluate it on a systematic progression of GPT models (GPT-3.5, GPT-4, GPT-4o, GPT-4o-mini). Using simple games like Tic-Tac-Toe, Connect Four, Battleship, and a Shape Recognition Game, all encoded in ASCII, we test strategic capabilities and spatial reasoning, core abilities any artificial intelligence would need to master for solving problems in chemistry. To probe generalization, we introduce two new games for spatial logic: LEGO Connect Language (LCL) and Guess-the-SMILES (GtS), a operationally simple chemistry benchmark. Our results show that GPT models provide meaningful responses for several tasks but, generally, perform poorly. A systematic performance progression with increased model capabilities (GPT-3.5, GPT-4, GPT-4o) is only observed for 4 out of the 7 benchmark tasks. All models consistently struggle with Battleship, LCL, and GtS. This suggests that while GPT models can emulate conversational proficiency and basic rule comprehension, they have limited generalization with respect to strategy and spatial reasoning. Particularly poor performance is observed for interpreting molecular graphs when encoded in ASCII. The results provided by our open-source benchmark suite (https://github.com/BlueVelvetSackOfGoldPotatoes/child-play{ChildPlay GitHub Repository}) caution against claims of emergent intelligence in GPT models, which appear more specialized than general.

STAR-R1: Spatial TrAnsformation Reasoning by Reinforcing Multimodal LLMs

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning. We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints. While traditional Supervised Fine-Tuning (SFT) fails to generate coherent reasoning paths in cross-view settings, sparse-reward Reinforcement Learning (RL) suffers from inefficient exploration and slow convergence. To address these limitations, we propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR. Specifically, STAR-R1 rewards partial correctness while penalizing excessive enumeration and passive inaction, enabling efficient exploration and precise reasoning. Comprehensive evaluations demonstrate that STAR-R1 achieves state-of-the-art performance across all 11 metrics, outperforming SFT by 23% in cross-view scenarios. Further analysis reveals STAR-R1's anthropomorphic behavior and highlights its unique ability to compare all objects for improving spatial reasoning. Our work provides critical insights in advancing the research of MLLMs and reasoning models. The codes, model weights, and data will be publicly available at https://github.com/zongzhao23/STAR-R1.

Xiangqi-R1: Enhancing Spatial Strategic Reasoning in LLMs for Chinese Chess via Reinforcement Learning

Game playing has long served as a fundamental benchmark for evaluating Artificial General Intelligence (AGI). While Large Language Models (LLMs) have demonstrated impressive capabilities in general reasoning, their effectiveness in spatial strategic reasoning, which is critical for complex and fully observable board games, remains insufficiently explored. In this work, we adopt Chinese Chess (Xiangqi) as a challenging and rich testbed due to its intricate rules and spatial complexity. To advance LLMs' strategic competence in such environments, we propose a training framework tailored to Xiangqi, built upon a large-scale dataset of five million board-move pairs enhanced with expert annotations and engine evaluations. Building on this foundation, we introduce Xiangqi-R1, a 7B-parameter model trained in multi-stage manner: (1) fine-tuning for legal move prediction to capture basic spatial rules, (2) incorporating strategic annotations to improve decision-making, and (3) applying reinforcement learning via Group Relative Policy Optimization (GRPO) with multi-dimensional reward signals to enhance reasoning stability. Our Experimental results indicate that, despite their size and power, general-purpose LLMs struggle to achieve satisfactory performance in these tasks. Compared to general-purpose LLMs, Xiangqi-R1 greatly advances with an 18% rise in move legality and a 22% boost in analysis accuracy. Our results point to a promising path for creating general strategic intelligence in spatially complex areas.

Benchmarking Spatiotemporal Reasoning in LLMs and Reasoning Models: Capabilities and Challenges

Spatiotemporal reasoning plays a key role in Cyber-Physical Systems (CPS). Despite advances in Large Language Models (LLMs) and Large Reasoning Models (LRMs), their capacity to reason about complex spatiotemporal signals remains underexplored. This paper proposes a hierarchical SpatioTemporal reAsoning benchmaRK, STARK, to systematically evaluate LLMs across three levels of reasoning complexity: state estimation (e.g., predicting field variables, localizing and tracking events in space and time), spatiotemporal reasoning over states (e.g., inferring spatial-temporal relationships), and world-knowledge-aware reasoning that integrates contextual and domain knowledge (e.g., intent prediction, landmark-aware navigation). We curate 26 distinct spatiotemporal tasks with diverse sensor modalities, comprising 14,552 challenges where models answer directly or by Python Code Interpreter. Evaluating 3 LRMs and 8 LLMs, we find LLMs achieve limited success in tasks requiring geometric reasoning (e.g., multilateration or triangulation), particularly as complexity increases. Surprisingly, LRMs show robust performance across tasks with various levels of difficulty, often competing or surpassing traditional first-principle-based methods. Our results show that in reasoning tasks requiring world knowledge, the performance gap between LLMs and LRMs narrows, with some LLMs even surpassing LRMs. However, the LRM o3 model continues to achieve leading performance across all evaluated tasks, a result attributed primarily to the larger size of the reasoning models. STARK motivates future innovations in model architectures and reasoning paradigms for intelligent CPS by providing a structured framework to identify limitations in the spatiotemporal reasoning of LLMs and LRMs.

PixelWorld: Towards Perceiving Everything as Pixels

Existing foundation models typically process visual input as pixels and textual input as tokens, a paradigm that contrasts with human perception, where both modalities are processed in a unified manner. With the rise of embodied and agentic AI, where inputs primarily come from camera pixels, the need for a unified perception framework becomes increasingly evident. In this paper, we propose to unify all modalities (text, tables, code, diagrams, images, etc) as pixel inputs, i.e. "Perceive Everything as Pixels" (PEAP). We introduce PixelWorld, a novel evaluation suite that unifies all the mentioned modalities into pixel space to gauge the existing models' performance. Our findings show that (1) PEAP outperforms baseline with token-based input in multimodal datasets, benefiting from unified input for better disambiguation, (2) significant declines in reasoning and coding capabilities across all models when processing pixel-based input, underscoring the need to enhance foundation models' perceptual abilities, (3) larger models can maintain strong performance on non-reasoning tasks under PEAP, while smaller models like Phi-3.5-V suffer significant performance degradation, (4) the attention pattern of PEAP is highly aligned with text token input, (5) PEAP can be accelerated significantly by exploiting the spatial sparsity. We conclude that the existing frontier models are competent in pixel perception, however, there is still headroom for improvement. Our code, dataset will be released upon acceptance.

ViewSpatial-Bench: Evaluating Multi-perspective Spatial Localization in Vision-Language Models

Vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and reasoning about visual content, but significant challenges persist in tasks requiring cross-viewpoint understanding and spatial reasoning. We identify a critical limitation: current VLMs excel primarily at egocentric spatial reasoning (from the camera's perspective) but fail to generalize to allocentric viewpoints when required to adopt another entity's spatial frame of reference. We introduce ViewSpatial-Bench, the first comprehensive benchmark designed specifically for multi-viewpoint spatial localization recognition evaluation across five distinct task types, supported by an automated 3D annotation pipeline that generates precise directional labels. Comprehensive evaluation of diverse VLMs on ViewSpatial-Bench reveals a significant performance disparity: models demonstrate reasonable performance on camera-perspective tasks but exhibit reduced accuracy when reasoning from a human viewpoint. By fine-tuning VLMs on our multi-perspective spatial dataset, we achieve an overall performance improvement of 46.24% across tasks, highlighting the efficacy of our approach. Our work establishes a crucial benchmark for spatial intelligence in embodied AI systems and provides empirical evidence that modeling 3D spatial relationships enhances VLMs' corresponding spatial comprehension capabilities.

MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation

Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning. While recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation, adapting these capabilities to 3D scenes remains underexplored. In this paper, we introduce MLLM-For3D, a simple yet effective framework that transfers knowledge from 2D MLLMs to 3D scene understanding. Specifically, we utilize MLLMs to generate multi-view pseudo segmentation masks and corresponding text embeddings, then unproject 2D masks into 3D space and align them with the text embeddings. The primary challenge lies in the absence of 3D context and spatial consistency across multiple views, causing the model to hallucinate objects that do not exist and fail to target objects consistently. Training the 3D model with such irrelevant objects leads to performance degradation. To address this, we introduce a spatial consistency strategy to enforce that segmentation masks remain coherent in the 3D space, effectively capturing the geometry of the scene. Moreover, we develop a Token-for-Query approach for multimodal semantic alignment, enabling consistent identification of the same object across different views. Extensive evaluations on various challenging indoor scene benchmarks demonstrate that, even without any labeled 3D training data, MLLM-For3D outperforms existing 3D reasoning segmentation methods, effectively interpreting user intent, understanding 3D scenes, and reasoning about spatial relationships.

UniBench: Visual Reasoning Requires Rethinking Vision-Language Beyond Scaling

Significant research efforts have been made to scale and improve vision-language model (VLM) training approaches. Yet, with an ever-growing number of benchmarks, researchers are tasked with the heavy burden of implementing each protocol, bearing a non-trivial computational cost, and making sense of how all these benchmarks translate into meaningful axes of progress. To facilitate a systematic evaluation of VLM progress, we introduce UniBench: a unified implementation of 50+ VLM benchmarks spanning a comprehensive range of carefully categorized capabilities from object recognition to spatial awareness, counting, and much more. We showcase the utility of UniBench for measuring progress by evaluating nearly 60 publicly available vision-language models, trained on scales of up to 12.8B samples. We find that while scaling training data or model size can boost many vision-language model capabilities, scaling offers little benefit for reasoning or relations. Surprisingly, we also discover today's best VLMs struggle on simple digit recognition and counting tasks, e.g. MNIST, which much simpler networks can solve. Where scale falls short, we find that more precise interventions, such as data quality or tailored-learning objectives offer more promise. For practitioners, we also offer guidance on selecting a suitable VLM for a given application. Finally, we release an easy-to-run UniBench code-base with the full set of 50+ benchmarks and comparisons across 59 models as well as a distilled, representative set of benchmarks that runs in 5 minutes on a single GPU.

MORSE-500: A Programmatically Controllable Video Benchmark to Stress-Test Multimodal Reasoning

Despite rapid advances in vision-language models (VLMs), current benchmarks for multimodal reasoning fall short in three key dimensions. First, they overwhelmingly rely on static images, failing to capture the temporal complexity of real-world environments. Second, they narrowly focus on mathematical problem-solving, neglecting the broader spectrum of reasoning skills -- including abstract, physical, planning, spatial, and temporal capabilities -- required for robust multimodal intelligence. Third, many benchmarks quickly saturate, offering limited headroom for diagnosing failure modes or measuring continued progress. We introduce MORSE-500 (Multimodal Reasoning Stress-test Environment), a video benchmark composed of 500 fully scripted clips with embedded questions spanning six complementary reasoning categories. Each instance is programmatically generated using deterministic Python scripts (via Manim, Matplotlib, MoviePy), generative video models, and curated real footage. This script-driven design allows fine-grained control over visual complexity, distractor density, and temporal dynamics -- enabling difficulty to be scaled systematically as models improve. Unlike static benchmarks that become obsolete once saturated, MORSE-500 is built to evolve: its controllable generation pipeline supports the creation of arbitrarily challenging new instances, making it ideally suited for stress-testing next-generation models. Initial experiments with state-of-the-art systems -- including various Gemini 2.5 Pro and OpenAI o3 which represent the strongest available at the time, alongside strong open-source models -- reveal substantial performance gaps across all categories, with particularly large deficits in abstract and planning tasks. We release the full dataset, generation scripts, and evaluation harness to support transparent, reproducible, and forward-looking multimodal reasoning research.

PuzzleWorld: A Benchmark for Multimodal, Open-Ended Reasoning in Puzzlehunts

Puzzlehunts are a genre of complex, multi-step puzzles lacking well-defined problem definitions. In contrast to conventional reasoning benchmarks consisting of tasks with clear instructions, puzzlehunts require models to discover the underlying problem structure from multimodal evidence and iterative reasoning, mirroring real-world domains such as scientific discovery, exploratory data analysis, or investigative problem-solving. Despite recent progress in foundation models, their performance on such open-ended settings remains largely untested. In this paper, we introduce PuzzleWorld, a large-scale benchmark of 667 puzzlehunt-style problems designed to assess step-by-step, open-ended, and creative multimodal reasoning. Each puzzle is annotated with the final solution, detailed reasoning traces, and cognitive skill labels, enabling holistic benchmarking and fine-grained diagnostic analysis. Most state-of-the-art models achieve only 1-2% final answer accuracy, with the best model solving only 14% of puzzles and reaching 40% stepwise accuracy. To demonstrate the value of our reasoning annotations, we show that fine-tuning a small model on reasoning traces improves stepwise reasoning from 4% to 11%, while training on final answers alone degrades performance to near zero. Our error analysis reveals that current models exhibit myopic reasoning, are bottlenecked by the limitations of language-based inference, and lack sketching capabilities crucial for visual and spatial reasoning. We release PuzzleWorld at https://github.com/MIT-MI/PuzzleWorld to support future work on building more general, open-ended, and creative reasoning systems.

Geography-Aware Large Language Models for Next POI Recommendation

The next Point-of-Interest (POI) recommendation task aims to predict users' next destinations based on their historical movement data and plays a key role in location-based services and personalized applications. Accurate next POI recommendation depends on effectively modeling geographic information and POI transition relations, which are crucial for capturing spatial dependencies and user movement patterns. While Large Language Models (LLMs) exhibit strong capabilities in semantic understanding and contextual reasoning, applying them to spatial tasks like next POI recommendation remains challenging. First, the infrequent nature of specific GPS coordinates makes it difficult for LLMs to model precise spatial contexts. Second, the lack of knowledge about POI transitions limits their ability to capture potential POI-POI relationships. To address these issues, we propose GA-LLM (Geography-Aware Large Language Model), a novel framework that enhances LLMs with two specialized components. The Geographic Coordinate Injection Module (GCIM) transforms GPS coordinates into spatial representations using hierarchical and Fourier-based positional encoding, enabling the model to understand geographic features from multiple perspectives. The POI Alignment Module (PAM) incorporates POI transition relations into the LLM's semantic space, allowing it to infer global POI relationships and generalize to unseen POIs. Experiments on three real-world datasets demonstrate the state-of-the-art performance of GA-LLM.

EmbodiedBench: Comprehensive Benchmarking Multi-modal Large Language Models for Vision-Driven Embodied Agents

Leveraging Multi-modal Large Language Models (MLLMs) to create embodied agents offers a promising avenue for tackling real-world tasks. While language-centric embodied agents have garnered substantial attention, MLLM-based embodied agents remain underexplored due to the lack of comprehensive evaluation frameworks. To bridge this gap, we introduce EmbodiedBench, an extensive benchmark designed to evaluate vision-driven embodied agents. EmbodiedBench features: (1) a diverse set of 1,128 testing tasks across four environments, ranging from high-level semantic tasks (e.g., household) to low-level tasks involving atomic actions (e.g., navigation and manipulation); and (2) six meticulously curated subsets evaluating essential agent capabilities like commonsense reasoning, complex instruction understanding, spatial awareness, visual perception, and long-term planning. Through extensive experiments, we evaluated 13 leading proprietary and open-source MLLMs within EmbodiedBench. Our findings reveal that: MLLMs excel at high-level tasks but struggle with low-level manipulation, with the best model, GPT-4o, scoring only 28.9% on average. EmbodiedBench provides a multifaceted standardized evaluation platform that not only highlights existing challenges but also offers valuable insights to advance MLLM-based embodied agents. Our code is available at https://embodiedbench.github.io.

LiDAR-LLM: Exploring the Potential of Large Language Models for 3D LiDAR Understanding

Recently, Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have shown promise in instruction following and 2D image understanding. While these models are powerful, they have not yet been developed to comprehend the more challenging 3D physical scenes, especially when it comes to the sparse outdoor LiDAR data. In this paper, we introduce LiDAR-LLM, which takes raw LiDAR data as input and harnesses the remarkable reasoning capabilities of LLMs to gain a comprehensive understanding of outdoor 3D scenes. The central insight of our LiDAR-LLM is the reformulation of 3D outdoor scene cognition as a language modeling problem, encompassing tasks such as 3D captioning, 3D grounding, 3D question answering, etc. Specifically, due to the scarcity of 3D LiDAR-text pairing data, we introduce a three-stage training strategy and generate relevant datasets, progressively aligning the 3D modality with the language embedding space of LLM. Furthermore, we design a View-Aware Transformer (VAT) to connect the 3D encoder with the LLM, which effectively bridges the modality gap and enhances the LLM's spatial orientation comprehension of visual features. Our experiments show that LiDAR-LLM possesses favorable capabilities to comprehend various instructions regarding 3D scenes and engage in complex spatial reasoning. LiDAR-LLM attains a 40.9 BLEU-1 on the 3D captioning task and achieves a 63.1\% classification accuracy and a 14.3\% BEV mIoU on the 3D grounding task. Web page: https://sites.google.com/view/lidar-llm

Robo2VLM: Visual Question Answering from Large-Scale In-the-Wild Robot Manipulation Datasets

Vision-Language Models (VLMs) acquire real-world knowledge and general reasoning ability through Internet-scale image-text corpora. They can augment robotic systems with scene understanding and task planning, and assist visuomotor policies that are trained on robot trajectory data. We explore the reverse paradigm - using rich, real, multi-modal robot trajectory data to enhance and evaluate VLMs. In this paper, we present Robo2VLM, a Visual Question Answering (VQA) dataset generation framework for VLMs. Given a human tele-operated robot trajectory, Robo2VLM derives ground-truth from non-visual and non-descriptive sensory modalities, such as end-effector pose, gripper aperture, and force sensing. Based on these modalities, it segments the robot trajectory into a sequence of manipulation phases. At each phase, Robo2VLM uses scene and interaction understanding to identify 3D properties of the robot, task goal, and the target object. The properties are used to generate representative VQA queries - images with textural multiple-choice questions - based on spatial, goal-conditioned, and interaction reasoning question templates. We curate Robo2VLM-1, a large-scale in-the-wild dataset with 684,710 questions covering 463 distinct scenes and 3,396 robotic manipulation tasks from 176k real robot trajectories. Results suggest that Robo2VLM-1 can benchmark and improve VLM capabilities in spatial and interaction reasoning.

SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models

Reasoning about motion and space is a fundamental cognitive capability that is required by multiple real-world applications. While many studies highlight that large multimodal language models (MLMs) struggle to reason about space, they only focus on static spatial relationships, and not dynamic awareness of motion and space, i.e., reasoning about the effect of egocentric and object motions on spatial relationships. Manually annotating such object and camera movements is expensive. Hence, we introduce SAT, a simulated spatial aptitude training dataset comprising both static and dynamic spatial reasoning across 175K question-answer (QA) pairs and 20K scenes. Complementing this, we also construct a small (150 image-QAs) yet challenging dynamic spatial test set using real-world images. Leveraging our SAT datasets and 6 existing static spatial benchmarks, we systematically investigate what improves both static and dynamic spatial awareness. Our results reveal that simulations are surprisingly effective at imparting spatial aptitude to MLMs that translate to real images. We show that perfect annotations in simulation are more effective than existing approaches of pseudo-annotating real images. For instance, SAT training improves a LLaVA-13B model by an average 11% and a LLaVA-Video-7B model by an average 8% on multiple spatial benchmarks, including our real-image dynamic test set and spatial reasoning on long videos -- even outperforming some large proprietary models. While reasoning over static relationships improves with synthetic training data, there is still considerable room for improvement for dynamic reasoning questions.

Unfolding Spatial Cognition: Evaluating Multimodal Models on Visual Simulations

Spatial cognition is essential for human intelligence, enabling problem-solving through visual simulations rather than solely relying on verbal reasoning. However, existing AI benchmarks primarily assess verbal reasoning, neglecting the complexities of non-verbal, multi-step visual simulation. We introduce STARE(Spatial Transformations and Reasoning Evaluation), a benchmark designed to rigorously evaluate multimodal large language models on tasks better solved through multi-step visual simulation. STARE features 4K tasks spanning foundational geometric transformations (2D and 3D), integrated spatial reasoning (cube net folding and tangram puzzles), and real-world spatial reasoning (perspective and temporal reasoning), reflecting practical cognitive challenges like object assembly, mechanical diagram interpretation, and everyday spatial navigation. Our evaluations show that models excel at reasoning over simpler 2D transformations, but perform close to random chance on more complex tasks like 3D cube net folding and tangram puzzles that require multi-step visual simulations. Humans achieve near-perfect accuracy but take considerable time (up to 28.9s) on complex tasks, significantly speeding up (down by 7.5 seconds on average) with intermediate visual simulations. In contrast, models exhibit inconsistent performance gains from visual simulations, improving on most tasks but declining in specific cases like tangram puzzles (GPT-4o, o1) and cube net folding (Claude-3.5, Gemini-2.0 Flash), indicating that models may not know how to effectively leverage intermediate visual information.

SURPRISE3D: A Dataset for Spatial Understanding and Reasoning in Complex 3D Scenes

The integration of language and 3D perception is critical for embodied AI and robotic systems to perceive, understand, and interact with the physical world. Spatial reasoning, a key capability for understanding spatial relationships between objects, remains underexplored in current 3D vision-language research. Existing datasets often mix semantic cues (e.g., object name) with spatial context, leading models to rely on superficial shortcuts rather than genuinely interpreting spatial relationships. To address this gap, we introduce Surprise3D, a novel dataset designed to evaluate language-guided spatial reasoning segmentation in complex 3D scenes. Surprise3D consists of more than 200k vision language pairs across 900+ detailed indoor scenes from ScanNet++ v2, including more than 2.8k unique object classes. The dataset contains 89k+ human-annotated spatial queries deliberately crafted without object name, thereby mitigating shortcut biases in spatial understanding. These queries comprehensively cover various spatial reasoning skills, such as relative position, narrative perspective, parametric perspective, and absolute distance reasoning. Initial benchmarks demonstrate significant challenges for current state-of-the-art expert 3D visual grounding methods and 3D-LLMs, underscoring the necessity of our dataset and the accompanying 3D Spatial Reasoning Segmentation (3D-SRS) benchmark suite. Surprise3D and 3D-SRS aim to facilitate advancements in spatially aware AI, paving the way for effective embodied interaction and robotic planning. The code and datasets can be found in https://github.com/liziwennba/SUPRISE.

Struct2D: A Perception-Guided Framework for Spatial Reasoning in Large Multimodal Models

Unlocking spatial reasoning in Large Multimodal Models (LMMs) is crucial for enabling intelligent interaction with 3D environments. While prior efforts often rely on explicit 3D inputs or specialized model architectures, we ask: can LMMs reason about 3D space using only structured 2D representations derived from perception? We introduce Struct2D, a perception-guided prompting framework that combines bird's-eye-view (BEV) images with object marks and object-centric metadata, optionally incorporating egocentric keyframes when needed. Using Struct2D, we conduct an in-depth zero-shot analysis of closed-source LMMs (e.g., GPT-o3) and find that they exhibit surprisingly strong spatial reasoning abilities when provided with structured 2D inputs, effectively handling tasks such as relative direction estimation and route planning. Building on these insights, we construct Struct2D-Set, a large-scale instruction tuning dataset with 200K fine-grained QA pairs across eight spatial reasoning categories, generated automatically from 3D indoor scenes. We fine-tune an open-source LMM (Qwen2.5VL) on Struct2D-Set, achieving competitive performance on multiple benchmarks, including 3D question answering, dense captioning, and object grounding. Our approach demonstrates that structured 2D inputs can effectively bridge perception and language reasoning in LMMs-without requiring explicit 3D representations as input. We will release both our code and dataset to support future research.

SIRI-Bench: Challenging VLMs' Spatial Intelligence through Complex Reasoning Tasks

Large Language Models (LLMs) are experiencing rapid advancements in complex reasoning, exhibiting remarkable generalization in mathematics and programming. In contrast, while spatial intelligence is fundamental for Vision-Language Models (VLMs) in real-world interaction, the systematic evaluation of their complex reasoning ability within spatial contexts remains underexplored. To bridge this gap, we introduce SIRI-Bench, a benchmark designed to evaluate VLMs' spatial intelligence through video-based reasoning tasks. SIRI-Bench comprises nearly 1K video-question-answer triplets, where each problem is embedded in a realistic 3D scene and captured by video. By carefully designing questions and corresponding 3D scenes, our benchmark ensures that solving the questions requires both spatial comprehension for extracting information and high-level reasoning for deriving solutions, making it a challenging benchmark for evaluating VLMs. To facilitate large-scale data synthesis, we develop an Automatic Scene Creation Engine. This engine, leveraging multiple specialized LLM agents, can generate realistic 3D scenes from abstract math problems, ensuring faithfulness to the original descriptions. Experimental results reveal that state-of-the-art VLMs struggle significantly on SIRI-Bench, underscoring the challenge of spatial reasoning. We hope that our study will bring researchers' attention to spatially grounded reasoning and advance VLMs in visual problem-solving.

Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models

Despite recent advances demonstrating vision-language models' (VLMs) abilities to describe complex relationships in images using natural language, their capability to quantitatively reason about object sizes and distances remains underexplored. In this work, we introduce a manually annotated benchmark, Q-Spatial Bench, with 271 questions across five categories designed for quantitative spatial reasoning and systematically investigate the performance of state-of-the-art VLMs on this task. Our analysis reveals that reasoning about distances between objects is particularly challenging for SoTA VLMs; however, some VLMs significantly outperform others, with an over 40-point gap between the two best performing models. We also make the surprising observation that the success rate of the top-performing VLM increases by 19 points when a reasoning path using a reference object emerges naturally in the response. Inspired by this observation, we develop a zero-shot prompting technique, SpatialPrompt, that encourages VLMs to answer quantitative spatial questions using reference objects as visual cues. By instructing VLMs to use reference objects in their reasoning paths via SpatialPrompt, Gemini 1.5 Pro, Gemini 1.5 Flash, and GPT-4V improve their success rates by over 40, 20, and 30 points, respectively. We emphasize that these significant improvements are obtained without needing more data, model architectural modifications, or fine-tuning.

GeoSense: Evaluating Identification and Application of Geometric Principles in Multimodal Reasoning

Geometry problem-solving (GPS), a challenging task requiring both visual comprehension and symbolic reasoning, effectively measures the reasoning capabilities of multimodal large language models (MLLMs). Humans exhibit strong reasoning ability in this task through accurate identification and adaptive application of geometric principles within visual contexts. However, existing benchmarks fail to jointly assess both dimensions of the human-like geometric reasoning mechanism in MLLMs, remaining a critical gap in assessing their ability to tackle GPS. To this end, we introduce GeoSense, the first comprehensive bilingual benchmark designed to systematically evaluate the geometric reasoning abilities of MLLMs through the lens of geometric principles. GeoSense features a five-level hierarchical framework of geometric principles spanning plane and solid geometry, an intricately annotated dataset of 1,789 problems, and an innovative evaluation strategy. Through extensive experiments on GeoSense with various open-source and closed-source MLLMs, we observe that Gemini-2.0-pro-flash performs best, achieving an overall score of 65.3. Our in-depth analysis reveals that the identification and application of geometric principles remain a bottleneck for leading MLLMs, jointly hindering their reasoning abilities. These findings underscore GeoSense's potential to guide future advancements in MLLMs' geometric reasoning capabilities, paving the way for more robust and human-like reasoning in artificial intelligence.

TTT-Bench: A Benchmark for Evaluating Reasoning Ability with Simple and Novel Tic-Tac-Toe-style Games

Large reasoning models (LRMs) have demonstrated impressive reasoning capabilities across a broad range of tasks including Olympiad-level mathematical problems, indicating evidence of their complex reasoning abilities. While many reasoning benchmarks focus on the STEM domain, the ability of LRMs to reason correctly in broader task domains remains underexplored. In this work, we introduce TTT-Bench, a new benchmark that is designed to evaluate basic strategic, spatial, and logical reasoning abilities in LRMs through a suite of four two-player Tic-Tac-Toe-style games that humans can effortlessly solve from a young age. We propose a simple yet scalable programmatic approach for generating verifiable two-player game problems for TTT-Bench. Although these games are trivial for humans, they require reasoning about the intentions of the opponent, as well as the game board's spatial configurations, to ensure a win. We evaluate a diverse set of state-of-the-art LRMs, and discover that the models that excel at hard math problems frequently fail at these simple reasoning games. Further testing reveals that our evaluated reasoning models score on average downarrow 41\% \& downarrow 5\% lower on TTT-Bench compared to MATH 500 \& AIME 2024 respectively, with larger models achieving higher performance using shorter reasoning traces, where most of the models struggle on long-term strategic reasoning situations on simple and new TTT-Bench tasks.

LocationReasoner: Evaluating LLMs on Real-World Site Selection Reasoning

Recent advances in large language models (LLMs), particularly those enhanced through reinforced post-training, have demonstrated impressive reasoning capabilities, as exemplified by models such as OpenAI o1 and DeepSeek-R1. However, these capabilities are predominantly benchmarked on domains like mathematical problem solving and code generation -- leaving open the question of whether such reasoning skills generalize to complex, real-world scenarios. In this paper, we introduce LocationReasoner, a benchmark designed to evaluate LLMs' reasoning abilities in the context of real-world site selection, where models must identify feasible locations by reasoning over diverse and complicated spatial, environmental, and logistical constraints. The benchmark comprises over 300 carefully crafted queries of varying difficulty levels, supported by a sandbox environment with in-house tools for constraint-based location search. Extensive evaluations reveal that state-of-the-art reasoning models offer limited improvement over their non-reasoning predecessors in real-world contexts, with even the latest OpenAI o4 model failing on 30% of site selection tasks. Moreover, agentic strategies such as ReAct and Reflexion often suffer from over-reasoning, leading to worse outcomes than direct code-generation prompting. With key limitations of LLMs in holistic and non-linear reasoning highlighted, we release LocationReasoner to foster the development of LLMs and agents capable of robust, grounded reasoning in real-world decision-making tasks. Codes and data for our benchmark are available at https://github.com/miho-koda/LocationReasoner.

StarCraftImage: A Dataset For Prototyping Spatial Reasoning Methods For Multi-Agent Environments

Spatial reasoning tasks in multi-agent environments such as event prediction, agent type identification, or missing data imputation are important for multiple applications (e.g., autonomous surveillance over sensor networks and subtasks for reinforcement learning (RL)). StarCraft II game replays encode intelligent (and adversarial) multi-agent behavior and could provide a testbed for these tasks; however, extracting simple and standardized representations for prototyping these tasks is laborious and hinders reproducibility. In contrast, MNIST and CIFAR10, despite their extreme simplicity, have enabled rapid prototyping and reproducibility of ML methods. Following the simplicity of these datasets, we construct a benchmark spatial reasoning dataset based on StarCraft II replays that exhibit complex multi-agent behaviors, while still being as easy to use as MNIST and CIFAR10. Specifically, we carefully summarize a window of 255 consecutive game states to create 3.6 million summary images from 60,000 replays, including all relevant metadata such as game outcome and player races. We develop three formats of decreasing complexity: Hyperspectral images that include one channel for every unit type (similar to multispectral geospatial images), RGB images that mimic CIFAR10, and grayscale images that mimic MNIST. We show how this dataset can be used for prototyping spatial reasoning methods. All datasets, code for extraction, and code for dataset loading can be found at https://starcraftdata.davidinouye.com

V-STaR: Benchmarking Video-LLMs on Video Spatio-Temporal Reasoning

Human processes video reasoning in a sequential spatio-temporal reasoning logic, we first identify the relevant frames ("when") and then analyse the spatial relationships ("where") between key objects, and finally leverage these relationships to draw inferences ("what"). However, can Video Large Language Models (Video-LLMs) also "reason through a sequential spatio-temporal logic" in videos? Existing Video-LLM benchmarks primarily focus on assessing object presence, neglecting relational reasoning. Consequently, it is difficult to measure whether a model truly comprehends object interactions (actions/events) in videos or merely relies on pre-trained "memory" of co-occurrences as biases in generating answers. In this work, we introduce a Video Spatio-Temporal Reasoning (V-STaR) benchmark to address these shortcomings. The key idea is to decompose video understanding into a Reverse Spatio-Temporal Reasoning (RSTR) task that simultaneously evaluates what objects are present, when events occur, and where they are located while capturing the underlying Chain-of-thought (CoT) logic. To support this evaluation, we construct a dataset to elicit the spatial-temporal reasoning process of Video-LLMs. It contains coarse-to-fine CoT questions generated by a semi-automated GPT-4-powered pipeline, embedding explicit reasoning chains to mimic human cognition. Experiments from 14 Video-LLMs on our V-STaR reveal significant gaps between current Video-LLMs and the needs for robust and consistent spatio-temporal reasoning.

GRE Suite: Geo-localization Inference via Fine-Tuned Vision-Language Models and Enhanced Reasoning Chains

Recent advances in Visual Language Models (VLMs) have demonstrated exceptional performance in visual reasoning tasks. However, geo-localization presents unique challenges, requiring the extraction of multigranular visual cues from images and their integration with external world knowledge for systematic reasoning. Current approaches to geo-localization tasks often lack robust reasoning mechanisms and explainability, limiting their effectiveness. To address these limitations, we propose the Geo Reason Enhancement (GRE) Suite, a novel framework that augments VLMs with structured reasoning chains for accurate and interpretable location inference. The GRE Suite is systematically developed across three key dimensions: dataset, model, and benchmark. First, we introduce GRE30K, a high-quality geo-localization reasoning dataset designed to facilitate fine-grained visual and contextual analysis. Next, we present the GRE model, which employs a multi-stage reasoning strategy to progressively infer scene attributes, local details, and semantic features, thereby narrowing down potential geographic regions with enhanced precision. Finally, we construct the Geo Reason Evaluation Benchmark (GREval-Bench), a comprehensive evaluation framework that assesses VLMs across diverse urban, natural, and landmark scenes to measure both coarse-grained (e.g., country, continent) and fine-grained (e.g., city, street) localization performance. Experimental results demonstrate that GRE significantly outperforms existing methods across all granularities of geo-localization tasks, underscoring the efficacy of reasoning-augmented VLMs in complex geographic inference. Code and data will be released at https://github.com/Thorin215/GRE.

Benchmarking Spatial Relationships in Text-to-Image Generation

Spatial understanding is a fundamental aspect of computer vision and integral for human-level reasoning about images, making it an important component for grounded language understanding. While recent text-to-image synthesis (T2I) models have shown unprecedented improvements in photorealism, it is unclear whether they have reliable spatial understanding capabilities. We investigate the ability of T2I models to generate correct spatial relationships among objects and present VISOR, an evaluation metric that captures how accurately the spatial relationship described in text is generated in the image. To benchmark existing models, we introduce a dataset, SR_{2D}, that contains sentences describing two or more objects and the spatial relationships between them. We construct an automated evaluation pipeline to recognize objects and their spatial relationships, and employ it in a large-scale evaluation of T2I models. Our experiments reveal a surprising finding that, although state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations between them. Our analyses demonstrate several biases and artifacts of T2I models such as the difficulty with generating multiple objects, a bias towards generating the first object mentioned, spatially inconsistent outputs for equivalent relationships, and a correlation between object co-occurrence and spatial understanding capabilities. We conduct a human study that shows the alignment between VISOR and human judgement about spatial understanding. We offer the SR_{2D} dataset and the VISOR metric to the community in support of T2I reasoning research.

ST-VLM: Kinematic Instruction Tuning for Spatio-Temporal Reasoning in Vision-Language Models

Spatio-temporal reasoning is essential in understanding real-world environments in various fields, eg, autonomous driving and sports analytics. Recent advances have improved the spatial reasoning ability of Vision-Language Models (VLMs) by introducing large-scale data, but these models still struggle to analyze kinematic elements like traveled distance and speed of moving objects. To bridge this gap, we construct a spatio-temporal reasoning dataset and benchmark involving kinematic instruction tuning, referred to as STKit and STKit-Bench. They consist of real-world videos with 3D annotations, detailing object motion dynamics: traveled distance, speed, movement direction, inter-object distance comparisons, and relative movement direction. To further scale such data construction to videos without 3D labels, we propose an automatic pipeline to generate pseudo-labels using 4D reconstruction in real-world scale. With our kinematic instruction tuning data for spatio-temporal reasoning, we present ST-VLM, a VLM enhanced for spatio-temporal reasoning, which exhibits outstanding performance on STKit-Bench. Furthermore, we show that ST-VLM generalizes robustly across diverse domains and tasks, outperforming baselines on other spatio-temporal benchmarks (eg, ActivityNet, TVQA+). Finally, by integrating learned spatio-temporal reasoning with existing abilities, ST-VLM enables complex multi-step reasoning. Project page: https://ikodoh.github.io/ST-VLM.

Does Chain-of-Thought Reasoning Help Mobile GUI Agent? An Empirical Study

Reasoning capabilities have significantly improved the performance of vision-language models (VLMs) in domains such as mathematical problem-solving, coding, and visual question-answering. However, their impact on real-world applications remains unclear. This paper presents the first empirical study on the effectiveness of reasoning-enabled VLMs in mobile GUI agents, a domain that requires interpreting complex screen layouts, understanding user instructions, and executing multi-turn interactions. We evaluate two pairs of commercial models--Gemini 2.0 Flash and Claude 3.7 Sonnet--comparing their base and reasoning-enhanced versions across two static benchmarks (ScreenSpot and AndroidControl) and one interactive environment (AndroidWorld). We surprisingly find the Claude 3.7 Sonnet reasoning model achieves state-of-the-art performance on AndroidWorld. However, reasoning VLMs generally offer marginal improvements over non-reasoning models on static benchmarks and even degrade performance in some agent setups. Notably, reasoning and non-reasoning VLMs fail on different sets of tasks, suggesting that reasoning does have an impact, but its benefits and drawbacks counterbalance each other. We attribute these inconsistencies to the limitations of benchmarks and VLMs. Based on the findings, we provide insights for further enhancing mobile GUI agents in terms of benchmarks, VLMs, and their adaptability in dynamically invoking reasoning VLMs. The experimental data are publicly available at https://github.com/LlamaTouch/VLM-Reasoning-Traces.

Imitate, Explore, and Self-Improve: A Reproduction Report on Slow-thinking Reasoning Systems

Recently, slow-thinking reasoning systems, such as o1, have demonstrated remarkable capabilities in solving complex reasoning tasks. These systems typically engage in an extended thinking process before responding to a query, allowing them to generate more thorough, accurate, and well-reasoned solutions. These systems are primarily developed and maintained by industry, with their core techniques not publicly disclosed. In response, an increasing number of studies from the research community aim to explore the technical foundations underlying these powerful reasoning systems. Building on these prior efforts, this paper presents a reproduction report on implementing o1-like reasoning systems. We introduce an "imitate, explore, and self-improve" framework as our primary technical approach to train the reasoning model. In the initial phase, we use distilled long-form thought data to fine-tune the reasoning model, enabling it to invoke a slow-thinking mode. The model is then encouraged to explore challenging problems by generating multiple rollouts, which can result in increasingly more high-quality trajectories that lead to correct answers. Furthermore, the model undergoes self-improvement by iteratively refining its training dataset. To verify the effectiveness of this approach, we conduct extensive experiments on three challenging benchmarks. The experimental results demonstrate that our approach achieves competitive performance compared to industry-level reasoning systems on these benchmarks.

Pixel Reasoner: Incentivizing Pixel-Space Reasoning with Curiosity-Driven Reinforcement Learning

Chain-of-thought reasoning has significantly improved the performance of Large Language Models (LLMs) across various domains. However, this reasoning process has been confined exclusively to textual space, limiting its effectiveness in visually intensive tasks. To address this limitation, we introduce the concept of reasoning in the pixel-space. Within this novel framework, Vision-Language Models (VLMs) are equipped with a suite of visual reasoning operations, such as zoom-in and select-frame. These operations enable VLMs to directly inspect, interrogate, and infer from visual evidences, thereby enhancing reasoning fidelity for visual tasks. Cultivating such pixel-space reasoning capabilities in VLMs presents notable challenges, including the model's initially imbalanced competence and its reluctance to adopt the newly introduced pixel-space operations. We address these challenges through a two-phase training approach. The first phase employs instruction tuning on synthesized reasoning traces to familiarize the model with the novel visual operations. Following this, a reinforcement learning (RL) phase leverages a curiosity-driven reward scheme to balance exploration between pixel-space reasoning and textual reasoning. With these visual operations, VLMs can interact with complex visual inputs, such as information-rich images or videos to proactively gather necessary information. We demonstrate that this approach significantly improves VLM performance across diverse visual reasoning benchmarks. Our 7B model, \model, achieves 84\% on V* bench, 74\% on TallyQA-Complex, and 84\% on InfographicsVQA, marking the highest accuracy achieved by any open-source model to date. These results highlight the importance of pixel-space reasoning and the effectiveness of our framework.

VisualPuzzles: Decoupling Multimodal Reasoning Evaluation from Domain Knowledge

Current multimodal benchmarks often conflate reasoning with domain-specific knowledge, making it difficult to isolate and evaluate general reasoning abilities in non-expert settings. To address this, we introduce VisualPuzzles, a benchmark that targets visual reasoning while deliberately minimizing reliance on specialized knowledge. VisualPuzzles consists of diverse questions spanning five categories: algorithmic, analogical, deductive, inductive, and spatial reasoning. One major source of our questions is manually translated logical reasoning questions from the Chinese Civil Service Examination. Experiments show that VisualPuzzles requires significantly less intensive domain-specific knowledge and more complex reasoning compared to benchmarks like MMMU, enabling us to better evaluate genuine multimodal reasoning. Evaluations show that state-of-the-art multimodal large language models consistently lag behind human performance on VisualPuzzles, and that strong performance on knowledge-intensive benchmarks does not necessarily translate to success on reasoning-focused, knowledge-light tasks. Additionally, reasoning enhancements such as scaling up inference compute (with "thinking" modes) yield inconsistent gains across models and task types, and we observe no clear correlation between model size and performance. We also found that models exhibit different reasoning and answering patterns on VisualPuzzles compared to benchmarks with heavier emphasis on knowledge. VisualPuzzles offers a clearer lens through which to evaluate reasoning capabilities beyond factual recall and domain knowledge.

MME-Reasoning: A Comprehensive Benchmark for Logical Reasoning in MLLMs

Logical reasoning is a fundamental aspect of human intelligence and an essential capability for multimodal large language models (MLLMs). Despite the significant advancement in multimodal reasoning, existing benchmarks fail to comprehensively evaluate their reasoning abilities due to the lack of explicit categorization for logical reasoning types and an unclear understanding of reasoning. To address these issues, we introduce MME-Reasoning, a comprehensive benchmark designed to evaluate the reasoning ability of MLLMs, which covers all three types of reasoning (i.e., inductive, deductive, and abductive) in its questions. We carefully curate the data to ensure that each question effectively evaluates reasoning ability rather than perceptual skills or knowledge breadth, and extend the evaluation protocols to cover the evaluation of diverse questions. Our evaluation reveals substantial limitations of state-of-the-art MLLMs when subjected to holistic assessments of logical reasoning capabilities. Even the most advanced MLLMs show limited performance in comprehensive logical reasoning, with notable performance imbalances across reasoning types. In addition, we conducted an in-depth analysis of approaches such as ``thinking mode'' and Rule-based RL, which are commonly believed to enhance reasoning abilities. These findings highlight the critical limitations and performance imbalances of current MLLMs in diverse logical reasoning scenarios, providing comprehensive and systematic insights into the understanding and evaluation of reasoning capabilities.

Perception, Reason, Think, and Plan: A Survey on Large Multimodal Reasoning Models

Reasoning lies at the heart of intelligence, shaping the ability to make decisions, draw conclusions, and generalize across domains. In artificial intelligence, as systems increasingly operate in open, uncertain, and multimodal environments, reasoning becomes essential for enabling robust and adaptive behavior. Large Multimodal Reasoning Models (LMRMs) have emerged as a promising paradigm, integrating modalities such as text, images, audio, and video to support complex reasoning capabilities and aiming to achieve comprehensive perception, precise understanding, and deep reasoning. As research advances, multimodal reasoning has rapidly evolved from modular, perception-driven pipelines to unified, language-centric frameworks that offer more coherent cross-modal understanding. While instruction tuning and reinforcement learning have improved model reasoning, significant challenges remain in omni-modal generalization, reasoning depth, and agentic behavior. To address these issues, we present a comprehensive and structured survey of multimodal reasoning research, organized around a four-stage developmental roadmap that reflects the field's shifting design philosophies and emerging capabilities. First, we review early efforts based on task-specific modules, where reasoning was implicitly embedded across stages of representation, alignment, and fusion. Next, we examine recent approaches that unify reasoning into multimodal LLMs, with advances such as Multimodal Chain-of-Thought (MCoT) and multimodal reinforcement learning enabling richer and more structured reasoning chains. Finally, drawing on empirical insights from challenging benchmarks and experimental cases of OpenAI O3 and O4-mini, we discuss the conceptual direction of native large multimodal reasoning models (N-LMRMs), which aim to support scalable, agentic, and adaptive reasoning and planning in complex, real-world environments.

ProcBench: Benchmark for Multi-Step Reasoning and Following Procedure

Reasoning is central to a wide range of intellectual activities, and while the capabilities of large language models (LLMs) continue to advance, their performance in reasoning tasks remains limited. The processes and mechanisms underlying reasoning are not yet fully understood, but key elements include path exploration, selection of relevant knowledge, and multi-step inference. Problems are solved through the synthesis of these components. In this paper, we propose a benchmark that focuses on a specific aspect of reasoning ability: the direct evaluation of multi-step inference. To this end, we design a special reasoning task where multi-step inference is specifically focused by largely eliminating path exploration and implicit knowledge utilization. Our dataset comprises pairs of explicit instructions and corresponding questions, where the procedures necessary for solving the questions are entirely detailed within the instructions. This setup allows models to solve problems solely by following the provided directives. By constructing problems that require varying numbers of steps to solve and evaluating responses at each step, we enable a thorough assessment of state-of-the-art LLMs' ability to follow instructions. To ensure the robustness of our evaluation, we include multiple distinct tasks. Furthermore, by comparing accuracy across tasks, utilizing step-aware metrics, and applying separately defined measures of complexity, we conduct experiments that offer insights into the capabilities and limitations of LLMs in reasoning tasks. Our findings have significant implications for the development of LLMs and highlight areas for future research in advancing their reasoning abilities. Our dataset is available at https://huggingface.co/datasets/ifujisawa/procbench and code at https://github.com/ifujisawa/proc-bench.

Demystifying Scientific Problem-Solving in LLMs by Probing Knowledge and Reasoning

Scientific problem solving poses unique challenges for LLMs, requiring both deep domain knowledge and the ability to apply such knowledge through complex reasoning. While automated scientific reasoners hold great promise for assisting human scientists, there is currently no widely adopted holistic benchmark for evaluating scientific reasoning, and few approaches systematically disentangle the distinct roles of knowledge and reasoning in these tasks. To address these gaps, we introduce SciReas, a diverse suite of existing benchmarks for scientific reasoning tasks, and SciReas-Pro, a selective subset that requires more complex reasoning. Our holistic evaluation surfaces insights about scientific reasoning performance that remain hidden when relying on individual benchmarks alone. We then propose KRUX, a probing framework for studying the distinct roles of reasoning and knowledge in scientific tasks. Combining the two, we conduct an in-depth analysis that yields several key findings: (1) Retrieving task-relevant knowledge from model parameters is a critical bottleneck for LLMs in scientific reasoning; (2) Reasoning models consistently benefit from external knowledge added in-context on top of the reasoning enhancement; (3) Enhancing verbalized reasoning improves LLMs' ability to surface task-relevant knowledge. Finally, we conduct a lightweight analysis, comparing our science-focused data composition with concurrent efforts on long CoT SFT, and release SciLit01, a strong 8B baseline for scientific reasoning.

VLM-3R: Vision-Language Models Augmented with Instruction-Aligned 3D Reconstruction

The rapid advancement of Large Multimodal Models (LMMs) for 2D images and videos has motivated extending these models to understand 3D scenes, aiming for human-like visual-spatial intelligence. Nevertheless, achieving deep spatial understanding comparable to human capabilities poses significant challenges in model encoding and data acquisition. Existing methods frequently depend on external depth sensors for geometry capture or utilize off-the-shelf algorithms for pre-constructing 3D maps, thereby limiting their scalability, especially with prevalent monocular video inputs and for time-sensitive applications. In this work, we introduce VLM-3R, a unified framework for Vision-Language Models (VLMs) that incorporates 3D Reconstructive instruction tuning. VLM-3R processes monocular video frames by employing a geometry encoder to derive implicit 3D tokens that represent spatial understanding. Leveraging our Spatial-Visual-View Fusion and over 200K curated 3D reconstructive instruction tuning question-answer (QA) pairs, VLM-3R effectively aligns real-world spatial context with language instructions. This enables monocular 3D spatial assistance and embodied reasoning. To facilitate the evaluation of temporal reasoning, we introduce the Vision-Spatial-Temporal Intelligence benchmark, featuring over 138.6K QA pairs across five distinct tasks focused on evolving spatial relationships. Extensive experiments demonstrate that our model, VLM-3R, not only facilitates robust visual-spatial reasoning but also enables the understanding of temporal 3D context changes, excelling in both accuracy and scalability.

Geospatial Mechanistic Interpretability of Large Language Models

Large Language Models (LLMs) have demonstrated unprecedented capabilities across various natural language processing tasks. Their ability to process and generate viable text and code has made them ubiquitous in many fields, while their deployment as knowledge bases and "reasoning" tools remains an area of ongoing research. In geography, a growing body of literature has been focusing on evaluating LLMs' geographical knowledge and their ability to perform spatial reasoning. However, very little is still known about the internal functioning of these models, especially about how they process geographical information. In this chapter, we establish a novel framework for the study of geospatial mechanistic interpretability - using spatial analysis to reverse engineer how LLMs handle geographical information. Our aim is to advance our understanding of the internal representations that these complex models generate while processing geographical information - what one might call "how LLMs think about geographic information" if such phrasing was not an undue anthropomorphism. We first outline the use of probing in revealing internal structures within LLMs. We then introduce the field of mechanistic interpretability, discussing the superposition hypothesis and the role of sparse autoencoders in disentangling polysemantic internal representations of LLMs into more interpretable, monosemantic features. In our experiments, we use spatial autocorrelation to show how features obtained for placenames display spatial patterns related to their geographic location and can thus be interpreted geospatially, providing insights into how these models process geographical information. We conclude by discussing how our framework can help shape the study and use of foundation models in geography.