ner_bert_model
This model is a fine-tuned version of distilbert-base-uncased on the lener_br dataset. It achieves the following results on the evaluation set:
- Loss: 0.0922
- Precision: 0.8281
- Recall: 0.8533
- F1: 0.8405
- Accuracy: 0.9841
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 490 | 0.0971 | 0.6373 | 0.7607 | 0.6936 | 0.9706 |
0.2449 | 2.0 | 980 | 0.0820 | 0.6916 | 0.8063 | 0.7446 | 0.9760 |
0.0634 | 3.0 | 1470 | 0.0750 | 0.7106 | 0.8473 | 0.7730 | 0.9778 |
0.0352 | 4.0 | 1960 | 0.0707 | 0.7690 | 0.8361 | 0.8011 | 0.9799 |
0.0226 | 5.0 | 2450 | 0.0812 | 0.8063 | 0.8394 | 0.8225 | 0.9821 |
0.0157 | 6.0 | 2940 | 0.0779 | 0.7931 | 0.8486 | 0.8199 | 0.9826 |
0.0105 | 7.0 | 3430 | 0.0958 | 0.7314 | 0.8586 | 0.7899 | 0.9779 |
0.0082 | 8.0 | 3920 | 0.0810 | 0.8158 | 0.8460 | 0.8306 | 0.9829 |
0.0067 | 9.0 | 4410 | 0.0830 | 0.8190 | 0.8526 | 0.8355 | 0.9832 |
0.0054 | 10.0 | 4900 | 0.0810 | 0.8165 | 0.8500 | 0.8329 | 0.9833 |
0.0051 | 11.0 | 5390 | 0.0855 | 0.8180 | 0.8493 | 0.8333 | 0.9832 |
0.0037 | 12.0 | 5880 | 0.0862 | 0.8195 | 0.8519 | 0.8354 | 0.9841 |
0.0034 | 13.0 | 6370 | 0.0867 | 0.8165 | 0.8586 | 0.8370 | 0.9833 |
0.0027 | 14.0 | 6860 | 0.0922 | 0.8214 | 0.8420 | 0.8316 | 0.9832 |
0.0024 | 15.0 | 7350 | 0.0910 | 0.8147 | 0.8486 | 0.8313 | 0.9836 |
0.002 | 16.0 | 7840 | 0.0928 | 0.8191 | 0.8559 | 0.8371 | 0.9840 |
0.0018 | 17.0 | 8330 | 0.0928 | 0.8119 | 0.8559 | 0.8333 | 0.9834 |
0.0017 | 18.0 | 8820 | 0.0920 | 0.8228 | 0.8592 | 0.8406 | 0.9838 |
0.0015 | 19.0 | 9310 | 0.0919 | 0.8242 | 0.8553 | 0.8394 | 0.9837 |
0.0011 | 20.0 | 9800 | 0.0922 | 0.8281 | 0.8533 | 0.8405 | 0.9841 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 758
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for pardrib1998/ner_bert_model
Base model
distilbert/distilbert-base-uncasedDataset used to train pardrib1998/ner_bert_model
Evaluation results
- Precision on lener_brtest set self-reported0.828
- Recall on lener_brtest set self-reported0.853
- F1 on lener_brtest set self-reported0.840
- Accuracy on lener_brtest set self-reported0.984