ner_bert_model

This model is a fine-tuned version of distilbert-base-uncased on the lener_br dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0922
  • Precision: 0.8281
  • Recall: 0.8533
  • F1: 0.8405
  • Accuracy: 0.9841

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 490 0.0971 0.6373 0.7607 0.6936 0.9706
0.2449 2.0 980 0.0820 0.6916 0.8063 0.7446 0.9760
0.0634 3.0 1470 0.0750 0.7106 0.8473 0.7730 0.9778
0.0352 4.0 1960 0.0707 0.7690 0.8361 0.8011 0.9799
0.0226 5.0 2450 0.0812 0.8063 0.8394 0.8225 0.9821
0.0157 6.0 2940 0.0779 0.7931 0.8486 0.8199 0.9826
0.0105 7.0 3430 0.0958 0.7314 0.8586 0.7899 0.9779
0.0082 8.0 3920 0.0810 0.8158 0.8460 0.8306 0.9829
0.0067 9.0 4410 0.0830 0.8190 0.8526 0.8355 0.9832
0.0054 10.0 4900 0.0810 0.8165 0.8500 0.8329 0.9833
0.0051 11.0 5390 0.0855 0.8180 0.8493 0.8333 0.9832
0.0037 12.0 5880 0.0862 0.8195 0.8519 0.8354 0.9841
0.0034 13.0 6370 0.0867 0.8165 0.8586 0.8370 0.9833
0.0027 14.0 6860 0.0922 0.8214 0.8420 0.8316 0.9832
0.0024 15.0 7350 0.0910 0.8147 0.8486 0.8313 0.9836
0.002 16.0 7840 0.0928 0.8191 0.8559 0.8371 0.9840
0.0018 17.0 8330 0.0928 0.8119 0.8559 0.8333 0.9834
0.0017 18.0 8820 0.0920 0.8228 0.8592 0.8406 0.9838
0.0015 19.0 9310 0.0919 0.8242 0.8553 0.8394 0.9837
0.0011 20.0 9800 0.0922 0.8281 0.8533 0.8405 0.9841

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
758
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for pardrib1998/ner_bert_model

Finetuned
(8894)
this model

Dataset used to train pardrib1998/ner_bert_model

Evaluation results