deit3-gravit-c2 / README.md
parlange's picture
Upload DeiT3 model from experiment c2
d691394 verified
---
license: apache-2.0
tags:
- image-classification
- pytorch
- timm
- deit3
- vision-transformer
- transformer
- gravitational-lensing
- strong-lensing
- astronomy
- astrophysics
datasets:
- parlange/gravit-c21-j24
metrics:
- accuracy
- auc
- f1
paper:
- title: "GraViT: A Gravitational Lens Discovery Toolkit with Vision Transformers"
url: "https://arxiv.org/abs/2509.00226"
authors: "Parlange et al."
model-index:
- name: DeiT3-c2
results:
- task:
type: image-classification
name: Strong Gravitational Lens Discovery
dataset:
type: common-test-sample
name: Common Test Sample (More et al. 2024)
metrics:
- type: accuracy
value: 0.8814
name: Average Accuracy
- type: auc
value: 0.9275
name: Average AUC-ROC
- type: f1
value: 0.6909
name: Average F1-Score
---
# 🌌 deit3-gravit-c2
πŸ”­ This model is part of **GraViT**: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery
πŸ”— **GitHub Repository**: [https://github.com/parlange/gravit](https://github.com/parlange/gravit)
## πŸ›°οΈ Model Details
- **πŸ€– Model Type**: DeiT3
- **πŸ§ͺ Experiment**: C2 - C21+J24-half
- **🌌 Dataset**: C21+J24
- **πŸͺ Fine-tuning Strategy**: half
## πŸ’» Quick Start
```python
import torch
import timm
# Load the model directly from the Hub
model = timm.create_model(
'hf-hub:parlange/deit3-gravit-c2',
pretrained=True
)
model.eval()
# Example inference
dummy_input = torch.randn(1, 3, 224, 224)
with torch.no_grad():
output = model(dummy_input)
predictions = torch.softmax(output, dim=1)
print(f"Lens probability: {predictions[0][1]:.4f}")
```
## ⚑️ Training Configuration
**Training Dataset:** C21+J24 (CaΓ±ameras et al. 2021 + Jaelani et al. 2024)
**Fine-tuning Strategy:** half
| πŸ”§ Parameter | πŸ“ Value |
|--------------|----------|
| Batch Size | 192 |
| Learning Rate | AdamW with ReduceLROnPlateau |
| Epochs | 100 |
| Patience | 10 |
| Optimizer | AdamW |
| Scheduler | ReduceLROnPlateau |
| Image Size | 224x224 |
| Fine Tune Mode | half |
| Stochastic Depth Probability | 0.1 |
## πŸ“ˆ Training Curves
![Combined Training Metrics](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/training_curves/DeiT3_combined_metrics.png)
## 🏁 Final Epoch Training Metrics
| Metric | Training | Validation |
|:---------:|:-----------:|:-------------:|
| πŸ“‰ Loss | 0.0128 | 0.0565 |
| 🎯 Accuracy | 0.9954 | 0.9898 |
| πŸ“Š AUC-ROC | 0.9999 | 0.9987 |
| βš–οΈ F1 Score | 0.9954 | 0.9898 |
## β˜‘οΈ Evaluation Results
### ROC Curves and Confusion Matrices
Performance across all test datasets (a through l) in the Common Test Sample (More et al. 2024):
![ROC + Confusion Matrix - Dataset A](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_a.png)
![ROC + Confusion Matrix - Dataset B](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_b.png)
![ROC + Confusion Matrix - Dataset C](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_c.png)
![ROC + Confusion Matrix - Dataset D](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_d.png)
![ROC + Confusion Matrix - Dataset E](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_e.png)
![ROC + Confusion Matrix - Dataset F](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_f.png)
![ROC + Confusion Matrix - Dataset G](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_g.png)
![ROC + Confusion Matrix - Dataset H](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_h.png)
![ROC + Confusion Matrix - Dataset I](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_i.png)
![ROC + Confusion Matrix - Dataset J](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_j.png)
![ROC + Confusion Matrix - Dataset K](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_k.png)
![ROC + Confusion Matrix - Dataset L](https://huggingface.co/parlange/deit3-gravit-c2/resolve/main/roc_confusion_matrix/DeiT3_roc_confusion_matrix_l.png)
### πŸ“‹ Performance Summary
Average performance across 12 test datasets from the Common Test Sample (More et al. 2024):
| Metric | Value |
|-----------|----------|
| 🎯 Average Accuracy | 0.8814 |
| πŸ“ˆ Average AUC-ROC | 0.9275 |
| βš–οΈ Average F1-Score | 0.6909 |
## πŸ“˜ Citation
If you use this model in your research, please cite:
```bibtex
@misc{parlange2025gravit,
title={GraViT: Transfer Learning with Vision Transformers and MLP-Mixer for Strong Gravitational Lens Discovery},
author={RenΓ© Parlange and Juan C. Cuevas-Tello and Octavio Valenzuela and Omar de J. Cabrera-Rosas and TomΓ‘s Verdugo and Anupreeta More and Anton T. Jaelani},
year={2025},
eprint={2509.00226},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2509.00226},
}
```
---
## Model Card Contact
For questions about this model, please contact the author through: https://github.com/parlange/