mehdi-moradi's picture
update model card README.md
e610a93
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: output
    results: []

output

This model is a fine-tuned version of HooshvareLab/bert-fa-zwnj-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9434
  • Accuracy: 0.6684
  • F1: 0.6608
  • F1 Micro: 0.6684
  • F1 Macro: 0.5384
  • Precision: 0.6585
  • Recall: 0.6684

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 F1 Micro F1 Macro Precision Recall
No log 1.0 96 1.1053 0.5789 0.5598 0.5789 0.4428 0.5993 0.5789
No log 2.0 192 1.1474 0.5737 0.5831 0.5737 0.4693 0.6383 0.5737
No log 3.0 288 1.0758 0.6316 0.6016 0.6316 0.4850 0.6356 0.6316
No log 4.0 384 1.2156 0.6474 0.6454 0.6474 0.5224 0.6489 0.6474
No log 5.0 480 1.5757 0.6316 0.6276 0.6316 0.5099 0.6293 0.6316
0.5922 6.0 576 1.7277 0.6579 0.6542 0.6579 0.5338 0.6520 0.6579
0.5922 7.0 672 1.9130 0.6789 0.6736 0.6789 0.5482 0.6749 0.6789
0.5922 8.0 768 1.9434 0.6684 0.6608 0.6684 0.5384 0.6585 0.6684

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Tokenizers 0.13.3