metadata
library_name: transformers
license: gpl-3.0
base_model: ckiplab/albert-tiny-chinese
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: tuned-albert-tiny
results: []
tuned-albert-tiny
This model is a fine-tuned version of ckiplab/albert-tiny-chinese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6326
- Accuracy: 1.0
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.6878 | 0.2 | 1 | 0.6827 | 0.625 | 0.75 | 0.7 | 0.6190 |
| 0.6849 | 0.4 | 2 | 0.6786 | 0.625 | 0.75 | 0.7 | 0.6190 |
| 0.6747 | 0.6 | 3 | 0.6729 | 0.875 | 0.875 | 0.9 | 0.8730 |
| 0.6763 | 0.8 | 4 | 0.6672 | 0.9375 | 0.9286 | 0.95 | 0.9352 |
| 0.6634 | 1.0 | 5 | 0.6628 | 0.9375 | 0.9286 | 0.95 | 0.9352 |
| 0.6562 | 1.2 | 6 | 0.6589 | 0.9375 | 0.9286 | 0.95 | 0.9352 |
| 0.6516 | 1.4 | 7 | 0.6553 | 0.9375 | 0.9286 | 0.95 | 0.9352 |
| 0.6525 | 1.6 | 8 | 0.6517 | 0.9375 | 0.9286 | 0.95 | 0.9352 |
| 0.6497 | 1.8 | 9 | 0.6477 | 0.9375 | 0.9286 | 0.95 | 0.9352 |
| 0.6432 | 2.0 | 10 | 0.6439 | 0.9375 | 0.9286 | 0.95 | 0.9352 |
| 0.6488 | 2.2 | 11 | 0.6403 | 0.9375 | 0.9286 | 0.95 | 0.9352 |
| 0.6384 | 2.4 | 12 | 0.6373 | 0.9375 | 0.9286 | 0.95 | 0.9352 |
| 0.6236 | 2.6 | 13 | 0.6349 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.6254 | 2.8 | 14 | 0.6334 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.6346 | 3.0 | 15 | 0.6326 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0