nominal-groups-recognition-medical-disease-beto-cmm-competencia2-beto-prescripciones-medicas

This model is a fine-tuned version of ccarvajal/beto-prescripciones-medicas on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4614
  • Body Part Precision: 0.3804
  • Body Part Recall: 0.4697
  • Body Part F1: 0.4204
  • Body Part Number: 413
  • Disease Precision: 0.4680
  • Disease Recall: 0.5477
  • Disease F1: 0.5047
  • Disease Number: 975
  • Family Member Precision: 1.0
  • Family Member Recall: 0.6
  • Family Member F1: 0.7500
  • Family Member Number: 30
  • Medication Precision: 0.6364
  • Medication Recall: 0.0753
  • Medication F1: 0.1346
  • Medication Number: 93
  • Procedure Precision: 0.4139
  • Procedure Recall: 0.3248
  • Procedure F1: 0.3640
  • Procedure Number: 311
  • Overall Precision: 0.4439
  • Overall Recall: 0.4687
  • Overall F1: 0.4560
  • Overall Accuracy: 0.8689

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 13
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Body Part Precision Body Part Recall Body Part F1 Body Part Number Disease Precision Disease Recall Disease F1 Disease Number Family Member Precision Family Member Recall Family Member F1 Family Member Number Medication Precision Medication Recall Medication F1 Medication Number Procedure Precision Procedure Recall Procedure F1 Procedure Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.5675 1.0 8025 0.4614 0.3804 0.4697 0.4204 413 0.4680 0.5477 0.5047 975 1.0 0.6 0.7500 30 0.6364 0.0753 0.1346 93 0.4139 0.3248 0.3640 311 0.4439 0.4687 0.4560 0.8689
0.4162 2.0 16050 0.4614 0.3804 0.4697 0.4204 413 0.4680 0.5477 0.5047 975 1.0 0.6 0.7500 30 0.6364 0.0753 0.1346 93 0.4139 0.3248 0.3640 311 0.4439 0.4687 0.4560 0.8689
0.4146 3.0 24075 0.4614 0.3804 0.4697 0.4204 413 0.4680 0.5477 0.5047 975 1.0 0.6 0.7500 30 0.6364 0.0753 0.1346 93 0.4139 0.3248 0.3640 311 0.4439 0.4687 0.4560 0.8689
0.4163 4.0 32100 0.4614 0.3804 0.4697 0.4204 413 0.4680 0.5477 0.5047 975 1.0 0.6 0.7500 30 0.6364 0.0753 0.1346 93 0.4139 0.3248 0.3640 311 0.4439 0.4687 0.4560 0.8689
0.4139 5.0 40125 0.4614 0.3804 0.4697 0.4204 413 0.4680 0.5477 0.5047 975 1.0 0.6 0.7500 30 0.6364 0.0753 0.1346 93 0.4139 0.3248 0.3640 311 0.4439 0.4687 0.4560 0.8689

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support