File size: 5,421 Bytes
021bd1c
f362ff7
 
021bd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
language:
- es
license: openrail
tags:
- generated_from_trainer
model-index:
- name: nominal-groups-recognition-medical-disease-competencia2-bert-medical-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nominal-groups-recognition-medical-disease-competencia2-bert-medical-ner

This model is a fine-tuned version of [ukkendane/bert-medical-ner](https://huggingface.co/ukkendane/bert-medical-ner) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3607
- Body Part Precision: 0.6555
- Body Part Recall: 0.7094
- Body Part F1: 0.6814
- Body Part Number: 413
- Disease Precision: 0.6835
- Disease Recall: 0.7067
- Disease F1: 0.6949
- Disease Number: 975
- Family Member Precision: 1.0
- Family Member Recall: 0.6
- Family Member F1: 0.7500
- Family Member Number: 30
- Medication Precision: 0.7647
- Medication Recall: 0.6989
- Medication F1: 0.7303
- Medication Number: 93
- Procedure Precision: 0.5385
- Procedure Recall: 0.5402
- Procedure F1: 0.5393
- Procedure Number: 311
- Overall Precision: 0.6594
- Overall Recall: 0.6767
- Overall F1: 0.6679
- Overall Accuracy: 0.9079

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 13
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Body Part Precision | Body Part Recall | Body Part F1 | Body Part Number | Disease Precision | Disease Recall | Disease F1 | Disease Number | Family Member Precision | Family Member Recall | Family Member F1 | Family Member Number | Medication Precision | Medication Recall | Medication F1 | Medication Number | Procedure Precision | Procedure Recall | Procedure F1 | Procedure Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4541        | 1.0   | 8025  | 0.3607          | 0.6555              | 0.7094           | 0.6814       | 413              | 0.6835            | 0.7067         | 0.6949     | 975            | 1.0                     | 0.6                  | 0.7500           | 30                   | 0.7647               | 0.6989            | 0.7303        | 93                | 0.5385              | 0.5402           | 0.5393       | 311              | 0.6594            | 0.6767         | 0.6679     | 0.9079           |
| 0.3149        | 2.0   | 16050 | 0.3607          | 0.6555              | 0.7094           | 0.6814       | 413              | 0.6835            | 0.7067         | 0.6949     | 975            | 1.0                     | 0.6                  | 0.7500           | 30                   | 0.7647               | 0.6989            | 0.7303        | 93                | 0.5385              | 0.5402           | 0.5393       | 311              | 0.6594            | 0.6767         | 0.6679     | 0.9079           |
| 0.3161        | 3.0   | 24075 | 0.3607          | 0.6555              | 0.7094           | 0.6814       | 413              | 0.6835            | 0.7067         | 0.6949     | 975            | 1.0                     | 0.6                  | 0.7500           | 30                   | 0.7647               | 0.6989            | 0.7303        | 93                | 0.5385              | 0.5402           | 0.5393       | 311              | 0.6594            | 0.6767         | 0.6679     | 0.9079           |
| 0.3181        | 4.0   | 32100 | 0.3607          | 0.6555              | 0.7094           | 0.6814       | 413              | 0.6835            | 0.7067         | 0.6949     | 975            | 1.0                     | 0.6                  | 0.7500           | 30                   | 0.7647               | 0.6989            | 0.7303        | 93                | 0.5385              | 0.5402           | 0.5393       | 311              | 0.6594            | 0.6767         | 0.6679     | 0.9079           |
| 0.3164        | 5.0   | 40125 | 0.3607          | 0.6555              | 0.7094           | 0.6814       | 413              | 0.6835            | 0.7067         | 0.6949     | 975            | 1.0                     | 0.6                  | 0.7500           | 30                   | 0.7647               | 0.6989            | 0.7303        | 93                | 0.5385              | 0.5402           | 0.5393       | 311              | 0.6594            | 0.6767         | 0.6679     | 0.9079           |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3