Job - Job matching finetuned BAAI/bge-m3

Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-m3
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • full_en
    • full_de
    • full_es
    • full_zh
    • mix

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobBGE-m3")
# Run inference
sentences = [
    'Volksvertreter',
    'Parlamentarier',
    'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric full_en full_es full_de full_zh mix_es mix_de mix_zh
cosine_accuracy@1 0.6476 0.1135 0.2956 0.6796 0.7395 0.6927 0.1789
cosine_accuracy@20 0.9905 1.0 0.9852 0.9903 0.9636 0.9641 1.0
cosine_accuracy@50 0.9905 1.0 0.9901 0.9903 0.9828 0.9839 1.0
cosine_accuracy@100 0.9905 1.0 0.9901 0.9903 0.9927 0.9922 1.0
cosine_accuracy@150 0.9905 1.0 0.9901 0.9903 0.9948 0.9932 1.0
cosine_accuracy@200 0.9905 1.0 0.9901 0.9903 0.9964 0.9943 1.0
cosine_precision@1 0.6476 0.1135 0.2956 0.6796 0.7395 0.6927 0.1789
cosine_precision@20 0.5062 0.5668 0.5404 0.4709 0.1249 0.128 0.1544
cosine_precision@50 0.3065 0.3903 0.3828 0.2804 0.0517 0.0533 0.0618
cosine_precision@100 0.1858 0.2525 0.2503 0.1732 0.0263 0.0271 0.0309
cosine_precision@150 0.1325 0.1901 0.1878 0.1239 0.0176 0.0181 0.0206
cosine_precision@200 0.1025 0.1508 0.1503 0.0977 0.0133 0.0136 0.0154
cosine_recall@1 0.0669 0.0035 0.0111 0.0643 0.2854 0.2604 0.0577
cosine_recall@20 0.5392 0.3796 0.3433 0.5119 0.9226 0.9285 1.0
cosine_recall@50 0.72 0.5636 0.534 0.6727 0.9548 0.965 1.0
cosine_recall@100 0.8254 0.6727 0.6499 0.788 0.9705 0.9796 1.0
cosine_recall@150 0.872 0.736 0.7101 0.8329 0.9766 0.9837 1.0
cosine_recall@200 0.9006 0.7698 0.7513 0.8687 0.9811 0.9862 1.0
cosine_ndcg@1 0.6476 0.1135 0.2956 0.6796 0.7395 0.6927 0.1789
cosine_ndcg@20 0.6822 0.6136 0.5648 0.6515 0.8119 0.7967 0.5443
cosine_ndcg@50 0.6975 0.5908 0.5522 0.6599 0.8208 0.8069 0.5443
cosine_ndcg@100 0.752 0.6168 0.5796 0.7157 0.8243 0.8102 0.5443
cosine_ndcg@150 0.7725 0.6489 0.6112 0.7357 0.8255 0.811 0.5443
cosine_ndcg@200 0.7827 0.6653 0.6309 0.7501 0.8262 0.8114 0.5443
cosine_mrr@1 0.6476 0.1135 0.2956 0.6796 0.7395 0.6927 0.1789
cosine_mrr@20 0.8 0.5536 0.5164 0.8217 0.8059 0.7767 0.4002
cosine_mrr@50 0.8 0.5536 0.5166 0.8217 0.8066 0.7774 0.4002
cosine_mrr@100 0.8 0.5536 0.5166 0.8217 0.8067 0.7775 0.4002
cosine_mrr@150 0.8 0.5536 0.5166 0.8217 0.8067 0.7775 0.4002
cosine_mrr@200 0.8 0.5536 0.5166 0.8217 0.8067 0.7775 0.4002
cosine_map@1 0.6476 0.1135 0.2956 0.6796 0.7395 0.6927 0.1789
cosine_map@20 0.5392 0.481 0.4222 0.5012 0.744 0.721 0.3272
cosine_map@50 0.5258 0.4304 0.3791 0.4813 0.7465 0.7238 0.3272
cosine_map@100 0.558 0.4335 0.3829 0.5105 0.7469 0.7242 0.3272
cosine_map@150 0.5666 0.4485 0.3981 0.5184 0.747 0.7243 0.3272
cosine_map@200 0.5695 0.4551 0.4056 0.5228 0.7471 0.7244 0.3272
cosine_map@500 0.5744 0.4677 0.4189 0.5277 0.7472 0.7244 0.3272

Training Details

Training Datasets

full_en

full_en

  • Dataset: full_en
  • Size: 28,880 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 5.68 tokens
    • max: 11 tokens
    • min: 3 tokens
    • mean: 5.76 tokens
    • max: 12 tokens
  • Samples:
    anchor positive
    air commodore flight lieutenant
    command and control officer flight officer
    air commodore command and control officer
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_de

full_de

  • Dataset: full_de
  • Size: 23,023 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 7.99 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 8.19 tokens
    • max: 30 tokens
  • Samples:
    anchor positive
    Staffelkommandantin Kommodore
    Luftwaffenoffizierin Luftwaffenoffizier/Luftwaffenoffizierin
    Staffelkommandantin Luftwaffenoffizierin
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_es

full_es

  • Dataset: full_es
  • Size: 20,724 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 9.13 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 8.84 tokens
    • max: 32 tokens
  • Samples:
    anchor positive
    jefe de escuadrón instructor
    comandante de aeronave instructor de simulador
    instructor oficial del Ejército del Aire
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_zh

full_zh

  • Dataset: full_zh
  • Size: 30,401 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 7.15 tokens
    • max: 14 tokens
    • min: 5 tokens
    • mean: 7.46 tokens
    • max: 21 tokens
  • Samples:
    anchor positive
    技术总监 技术和运营总监
    技术总监 技术主管
    技术总监 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
mix

mix

  • Dataset: mix
  • Size: 21,760 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 2 tokens
    • mean: 6.71 tokens
    • max: 19 tokens
    • min: 2 tokens
    • mean: 7.69 tokens
    • max: 19 tokens
  • Samples:
    anchor positive
    technical manager Technischer Direktor für Bühne, Film und Fernsehen
    head of technical directora técnica
    head of technical department 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 2
  • num_train_epochs: 5
  • warmup_ratio: 0.05
  • log_on_each_node: False
  • fp16: True
  • dataloader_num_workers: 4
  • ddp_find_unused_parameters: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: False
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: True
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss full_en_cosine_ndcg@200 full_es_cosine_ndcg@200 full_de_cosine_ndcg@200 full_zh_cosine_ndcg@200 mix_es_cosine_ndcg@200 mix_de_cosine_ndcg@200 mix_zh_cosine_ndcg@200
-1 -1 - 0.6856 0.5207 0.4655 0.6713 0.6224 0.5604 0.5548
0.0010 1 5.3354 - - - - - - -
0.1027 100 2.665 - - - - - - -
0.2053 200 1.3375 0.7691 0.6530 0.6298 0.7517 0.7513 0.7393 0.5490
0.3080 300 1.1101 - - - - - - -
0.4107 400 0.9453 0.7802 0.6643 0.6246 0.7531 0.7610 0.7441 0.5493
0.5133 500 0.9202 - - - - - - -
0.6160 600 0.7887 0.7741 0.6549 0.6171 0.7542 0.7672 0.7540 0.5482
0.7187 700 0.7604 - - - - - - -
0.8214 800 0.7219 0.7846 0.6674 0.6244 0.7648 0.7741 0.7592 0.5497
0.9240 900 0.6965 - - - - - - -
1.0267 1000 0.6253 0.7646 0.6391 0.6122 0.7503 0.7825 0.7704 0.5463
1.1294 1100 0.4737 - - - - - - -
1.2320 1200 0.5055 0.7758 0.6582 0.6178 0.7514 0.7857 0.7764 0.5501
1.3347 1300 0.5042 - - - - - - -
1.4374 1400 0.5073 0.7613 0.6578 0.6178 0.7505 0.7829 0.7762 0.5452
1.5400 1500 0.4975 - - - - - - -
1.6427 1600 0.5242 0.7736 0.6673 0.6279 0.7555 0.7940 0.7859 0.5477
1.7454 1700 0.4713 - - - - - - -
1.8480 1800 0.4814 0.7845 0.6733 0.6285 0.7642 0.7992 0.7904 0.5449
1.9507 1900 0.4526 - - - - - - -
2.0544 2000 0.36 0.7790 0.6639 0.6252 0.7500 0.8032 0.7888 0.5499
2.1571 2100 0.3744 - - - - - - -
2.2598 2200 0.3031 0.7787 0.6614 0.6190 0.7537 0.7993 0.7811 0.5476
2.3624 2300 0.3638 - - - - - - -
2.4651 2400 0.358 0.7798 0.6615 0.6258 0.7497 0.8018 0.7828 0.5481
2.5678 2500 0.3247 - - - - - - -
2.6704 2600 0.3247 0.7854 0.6663 0.6248 0.7560 0.8081 0.7835 0.5452
2.7731 2700 0.3263 - - - - - - -
2.8758 2800 0.3212 0.7761 0.6681 0.6250 0.7517 0.8121 0.7927 0.5458
2.9784 2900 0.3291 - - - - - - -
3.0821 3000 0.2816 0.7727 0.6604 0.6163 0.7370 0.8163 0.7985 0.5473
3.1848 3100 0.2698 - - - - - - -
3.2875 3200 0.2657 0.7757 0.6615 0.6247 0.7417 0.8117 0.8004 0.5436
3.3901 3300 0.2724 - - - - - - -
3.4928 3400 0.2584 0.7850 0.6583 0.6320 0.7458 0.8120 0.7980 0.5454
3.5955 3500 0.2573 - - - - - - -
3.6982 3600 0.2744 0.7796 0.6552 0.6237 0.7409 0.8193 0.8018 0.5466
3.8008 3700 0.3054 - - - - - - -
3.9035 3800 0.2727 0.7825 0.6642 0.6293 0.7504 0.8213 0.8058 0.5463
4.0062 3900 0.2353 - - - - - - -
4.1088 4000 0.2353 0.7747 0.6628 0.6263 0.7384 0.8239 0.8065 0.5447
4.2115 4100 0.2385 - - - - - - -
4.3142 4200 0.231 0.7811 0.6608 0.6254 0.7463 0.8226 0.8051 0.5442
4.4168 4300 0.2115 - - - - - - -
4.5195 4400 0.2151 0.7815 0.6634 0.6301 0.7489 0.8251 0.8101 0.5450
4.6222 4500 0.2496 - - - - - - -
4.7248 4600 0.2146 0.7814 0.6654 0.6294 0.7523 0.8258 0.8104 0.5436
4.8275 4700 0.2535 - - - - - - -
4.9302 4800 0.2058 0.7827 0.6653 0.6309 0.7501 0.8262 0.8114 0.5443

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for pj-mathematician/JobBGE-m3

Base model

BAAI/bge-m3
Finetuned
(299)
this model

Collection including pj-mathematician/JobBGE-m3

Evaluation results