Job - Job matching finetuned BAAI/bge-m3
Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("pj-mathematician/JobBGE-m3")
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
full_en |
full_es |
full_de |
full_zh |
mix_es |
mix_de |
mix_zh |
cosine_accuracy@1 |
0.6476 |
0.1135 |
0.2956 |
0.6796 |
0.7395 |
0.6927 |
0.1789 |
cosine_accuracy@20 |
0.9905 |
1.0 |
0.9852 |
0.9903 |
0.9636 |
0.9641 |
1.0 |
cosine_accuracy@50 |
0.9905 |
1.0 |
0.9901 |
0.9903 |
0.9828 |
0.9839 |
1.0 |
cosine_accuracy@100 |
0.9905 |
1.0 |
0.9901 |
0.9903 |
0.9927 |
0.9922 |
1.0 |
cosine_accuracy@150 |
0.9905 |
1.0 |
0.9901 |
0.9903 |
0.9948 |
0.9932 |
1.0 |
cosine_accuracy@200 |
0.9905 |
1.0 |
0.9901 |
0.9903 |
0.9964 |
0.9943 |
1.0 |
cosine_precision@1 |
0.6476 |
0.1135 |
0.2956 |
0.6796 |
0.7395 |
0.6927 |
0.1789 |
cosine_precision@20 |
0.5062 |
0.5668 |
0.5404 |
0.4709 |
0.1249 |
0.128 |
0.1544 |
cosine_precision@50 |
0.3065 |
0.3903 |
0.3828 |
0.2804 |
0.0517 |
0.0533 |
0.0618 |
cosine_precision@100 |
0.1858 |
0.2525 |
0.2503 |
0.1732 |
0.0263 |
0.0271 |
0.0309 |
cosine_precision@150 |
0.1325 |
0.1901 |
0.1878 |
0.1239 |
0.0176 |
0.0181 |
0.0206 |
cosine_precision@200 |
0.1025 |
0.1508 |
0.1503 |
0.0977 |
0.0133 |
0.0136 |
0.0154 |
cosine_recall@1 |
0.0669 |
0.0035 |
0.0111 |
0.0643 |
0.2854 |
0.2604 |
0.0577 |
cosine_recall@20 |
0.5392 |
0.3796 |
0.3433 |
0.5119 |
0.9226 |
0.9285 |
1.0 |
cosine_recall@50 |
0.72 |
0.5636 |
0.534 |
0.6727 |
0.9548 |
0.965 |
1.0 |
cosine_recall@100 |
0.8254 |
0.6727 |
0.6499 |
0.788 |
0.9705 |
0.9796 |
1.0 |
cosine_recall@150 |
0.872 |
0.736 |
0.7101 |
0.8329 |
0.9766 |
0.9837 |
1.0 |
cosine_recall@200 |
0.9006 |
0.7698 |
0.7513 |
0.8687 |
0.9811 |
0.9862 |
1.0 |
cosine_ndcg@1 |
0.6476 |
0.1135 |
0.2956 |
0.6796 |
0.7395 |
0.6927 |
0.1789 |
cosine_ndcg@20 |
0.6822 |
0.6136 |
0.5648 |
0.6515 |
0.8119 |
0.7967 |
0.5443 |
cosine_ndcg@50 |
0.6975 |
0.5908 |
0.5522 |
0.6599 |
0.8208 |
0.8069 |
0.5443 |
cosine_ndcg@100 |
0.752 |
0.6168 |
0.5796 |
0.7157 |
0.8243 |
0.8102 |
0.5443 |
cosine_ndcg@150 |
0.7725 |
0.6489 |
0.6112 |
0.7357 |
0.8255 |
0.811 |
0.5443 |
cosine_ndcg@200 |
0.7827 |
0.6653 |
0.6309 |
0.7501 |
0.8262 |
0.8114 |
0.5443 |
cosine_mrr@1 |
0.6476 |
0.1135 |
0.2956 |
0.6796 |
0.7395 |
0.6927 |
0.1789 |
cosine_mrr@20 |
0.8 |
0.5536 |
0.5164 |
0.8217 |
0.8059 |
0.7767 |
0.4002 |
cosine_mrr@50 |
0.8 |
0.5536 |
0.5166 |
0.8217 |
0.8066 |
0.7774 |
0.4002 |
cosine_mrr@100 |
0.8 |
0.5536 |
0.5166 |
0.8217 |
0.8067 |
0.7775 |
0.4002 |
cosine_mrr@150 |
0.8 |
0.5536 |
0.5166 |
0.8217 |
0.8067 |
0.7775 |
0.4002 |
cosine_mrr@200 |
0.8 |
0.5536 |
0.5166 |
0.8217 |
0.8067 |
0.7775 |
0.4002 |
cosine_map@1 |
0.6476 |
0.1135 |
0.2956 |
0.6796 |
0.7395 |
0.6927 |
0.1789 |
cosine_map@20 |
0.5392 |
0.481 |
0.4222 |
0.5012 |
0.744 |
0.721 |
0.3272 |
cosine_map@50 |
0.5258 |
0.4304 |
0.3791 |
0.4813 |
0.7465 |
0.7238 |
0.3272 |
cosine_map@100 |
0.558 |
0.4335 |
0.3829 |
0.5105 |
0.7469 |
0.7242 |
0.3272 |
cosine_map@150 |
0.5666 |
0.4485 |
0.3981 |
0.5184 |
0.747 |
0.7243 |
0.3272 |
cosine_map@200 |
0.5695 |
0.4551 |
0.4056 |
0.5228 |
0.7471 |
0.7244 |
0.3272 |
cosine_map@500 |
0.5744 |
0.4677 |
0.4189 |
0.5277 |
0.7472 |
0.7244 |
0.3272 |
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 3 tokens
- mean: 5.68 tokens
- max: 11 tokens
|
- min: 3 tokens
- mean: 5.76 tokens
- max: 12 tokens
|
- Samples:
anchor |
positive |
air commodore |
flight lieutenant |
command and control officer |
flight officer |
air commodore |
command and control officer |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 3 tokens
- mean: 7.99 tokens
- max: 30 tokens
|
- min: 3 tokens
- mean: 8.19 tokens
- max: 30 tokens
|
- Samples:
anchor |
positive |
Staffelkommandantin |
Kommodore |
Luftwaffenoffizierin |
Luftwaffenoffizier/Luftwaffenoffizierin |
Staffelkommandantin |
Luftwaffenoffizierin |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 3 tokens
- mean: 9.13 tokens
- max: 32 tokens
|
- min: 3 tokens
- mean: 8.84 tokens
- max: 32 tokens
|
- Samples:
anchor |
positive |
jefe de escuadrón |
instructor |
comandante de aeronave |
instructor de simulador |
instructor |
oficial del Ejército del Aire |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 5 tokens
- mean: 7.15 tokens
- max: 14 tokens
|
- min: 5 tokens
- mean: 7.46 tokens
- max: 21 tokens
|
- Samples:
anchor |
positive |
技术总监 |
技术和运营总监 |
技术总监 |
技术主管 |
技术总监 |
技术艺术总监 |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 2 tokens
- mean: 6.71 tokens
- max: 19 tokens
|
- min: 2 tokens
- mean: 7.69 tokens
- max: 19 tokens
|
- Samples:
anchor |
positive |
technical manager |
Technischer Direktor für Bühne, Film und Fernsehen |
head of technical |
directora técnica |
head of technical department |
技术艺术总监 |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 128
gradient_accumulation_steps
: 2
num_train_epochs
: 5
warmup_ratio
: 0.05
log_on_each_node
: False
fp16
: True
dataloader_num_workers
: 4
ddp_find_unused_parameters
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 128
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 2
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.05
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: False
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: True
dataloader_num_workers
: 4
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: True
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
full_en_cosine_ndcg@200 |
full_es_cosine_ndcg@200 |
full_de_cosine_ndcg@200 |
full_zh_cosine_ndcg@200 |
mix_es_cosine_ndcg@200 |
mix_de_cosine_ndcg@200 |
mix_zh_cosine_ndcg@200 |
-1 |
-1 |
- |
0.6856 |
0.5207 |
0.4655 |
0.6713 |
0.6224 |
0.5604 |
0.5548 |
0.0010 |
1 |
5.3354 |
- |
- |
- |
- |
- |
- |
- |
0.1027 |
100 |
2.665 |
- |
- |
- |
- |
- |
- |
- |
0.2053 |
200 |
1.3375 |
0.7691 |
0.6530 |
0.6298 |
0.7517 |
0.7513 |
0.7393 |
0.5490 |
0.3080 |
300 |
1.1101 |
- |
- |
- |
- |
- |
- |
- |
0.4107 |
400 |
0.9453 |
0.7802 |
0.6643 |
0.6246 |
0.7531 |
0.7610 |
0.7441 |
0.5493 |
0.5133 |
500 |
0.9202 |
- |
- |
- |
- |
- |
- |
- |
0.6160 |
600 |
0.7887 |
0.7741 |
0.6549 |
0.6171 |
0.7542 |
0.7672 |
0.7540 |
0.5482 |
0.7187 |
700 |
0.7604 |
- |
- |
- |
- |
- |
- |
- |
0.8214 |
800 |
0.7219 |
0.7846 |
0.6674 |
0.6244 |
0.7648 |
0.7741 |
0.7592 |
0.5497 |
0.9240 |
900 |
0.6965 |
- |
- |
- |
- |
- |
- |
- |
1.0267 |
1000 |
0.6253 |
0.7646 |
0.6391 |
0.6122 |
0.7503 |
0.7825 |
0.7704 |
0.5463 |
1.1294 |
1100 |
0.4737 |
- |
- |
- |
- |
- |
- |
- |
1.2320 |
1200 |
0.5055 |
0.7758 |
0.6582 |
0.6178 |
0.7514 |
0.7857 |
0.7764 |
0.5501 |
1.3347 |
1300 |
0.5042 |
- |
- |
- |
- |
- |
- |
- |
1.4374 |
1400 |
0.5073 |
0.7613 |
0.6578 |
0.6178 |
0.7505 |
0.7829 |
0.7762 |
0.5452 |
1.5400 |
1500 |
0.4975 |
- |
- |
- |
- |
- |
- |
- |
1.6427 |
1600 |
0.5242 |
0.7736 |
0.6673 |
0.6279 |
0.7555 |
0.7940 |
0.7859 |
0.5477 |
1.7454 |
1700 |
0.4713 |
- |
- |
- |
- |
- |
- |
- |
1.8480 |
1800 |
0.4814 |
0.7845 |
0.6733 |
0.6285 |
0.7642 |
0.7992 |
0.7904 |
0.5449 |
1.9507 |
1900 |
0.4526 |
- |
- |
- |
- |
- |
- |
- |
2.0544 |
2000 |
0.36 |
0.7790 |
0.6639 |
0.6252 |
0.7500 |
0.8032 |
0.7888 |
0.5499 |
2.1571 |
2100 |
0.3744 |
- |
- |
- |
- |
- |
- |
- |
2.2598 |
2200 |
0.3031 |
0.7787 |
0.6614 |
0.6190 |
0.7537 |
0.7993 |
0.7811 |
0.5476 |
2.3624 |
2300 |
0.3638 |
- |
- |
- |
- |
- |
- |
- |
2.4651 |
2400 |
0.358 |
0.7798 |
0.6615 |
0.6258 |
0.7497 |
0.8018 |
0.7828 |
0.5481 |
2.5678 |
2500 |
0.3247 |
- |
- |
- |
- |
- |
- |
- |
2.6704 |
2600 |
0.3247 |
0.7854 |
0.6663 |
0.6248 |
0.7560 |
0.8081 |
0.7835 |
0.5452 |
2.7731 |
2700 |
0.3263 |
- |
- |
- |
- |
- |
- |
- |
2.8758 |
2800 |
0.3212 |
0.7761 |
0.6681 |
0.6250 |
0.7517 |
0.8121 |
0.7927 |
0.5458 |
2.9784 |
2900 |
0.3291 |
- |
- |
- |
- |
- |
- |
- |
3.0821 |
3000 |
0.2816 |
0.7727 |
0.6604 |
0.6163 |
0.7370 |
0.8163 |
0.7985 |
0.5473 |
3.1848 |
3100 |
0.2698 |
- |
- |
- |
- |
- |
- |
- |
3.2875 |
3200 |
0.2657 |
0.7757 |
0.6615 |
0.6247 |
0.7417 |
0.8117 |
0.8004 |
0.5436 |
3.3901 |
3300 |
0.2724 |
- |
- |
- |
- |
- |
- |
- |
3.4928 |
3400 |
0.2584 |
0.7850 |
0.6583 |
0.6320 |
0.7458 |
0.8120 |
0.7980 |
0.5454 |
3.5955 |
3500 |
0.2573 |
- |
- |
- |
- |
- |
- |
- |
3.6982 |
3600 |
0.2744 |
0.7796 |
0.6552 |
0.6237 |
0.7409 |
0.8193 |
0.8018 |
0.5466 |
3.8008 |
3700 |
0.3054 |
- |
- |
- |
- |
- |
- |
- |
3.9035 |
3800 |
0.2727 |
0.7825 |
0.6642 |
0.6293 |
0.7504 |
0.8213 |
0.8058 |
0.5463 |
4.0062 |
3900 |
0.2353 |
- |
- |
- |
- |
- |
- |
- |
4.1088 |
4000 |
0.2353 |
0.7747 |
0.6628 |
0.6263 |
0.7384 |
0.8239 |
0.8065 |
0.5447 |
4.2115 |
4100 |
0.2385 |
- |
- |
- |
- |
- |
- |
- |
4.3142 |
4200 |
0.231 |
0.7811 |
0.6608 |
0.6254 |
0.7463 |
0.8226 |
0.8051 |
0.5442 |
4.4168 |
4300 |
0.2115 |
- |
- |
- |
- |
- |
- |
- |
4.5195 |
4400 |
0.2151 |
0.7815 |
0.6634 |
0.6301 |
0.7489 |
0.8251 |
0.8101 |
0.5450 |
4.6222 |
4500 |
0.2496 |
- |
- |
- |
- |
- |
- |
- |
4.7248 |
4600 |
0.2146 |
0.7814 |
0.6654 |
0.6294 |
0.7523 |
0.8258 |
0.8104 |
0.5436 |
4.8275 |
4700 |
0.2535 |
- |
- |
- |
- |
- |
- |
- |
4.9302 |
4800 |
0.2058 |
0.7827 |
0.6653 |
0.6309 |
0.7501 |
0.8262 |
0.8114 |
0.5443 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}