Job - Job matching BAAI/bge-small-en-v1.5
Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
full_en |
full_es |
full_de |
full_zh |
mix_es |
mix_de |
mix_zh |
cosine_accuracy@1 |
0.6571 |
0.1243 |
0.2956 |
0.3495 |
0.4113 |
0.2943 |
0.0971 |
cosine_accuracy@20 |
0.9905 |
1.0 |
0.9212 |
0.7379 |
0.7613 |
0.65 |
0.3586 |
cosine_accuracy@50 |
0.9905 |
1.0 |
0.9655 |
0.8252 |
0.8523 |
0.7608 |
0.4901 |
cosine_accuracy@100 |
0.9905 |
1.0 |
0.9754 |
0.8544 |
0.9121 |
0.8508 |
0.6002 |
cosine_accuracy@150 |
0.9905 |
1.0 |
0.9852 |
0.9029 |
0.9418 |
0.8898 |
0.6613 |
cosine_accuracy@200 |
0.9905 |
1.0 |
0.9852 |
0.9417 |
0.9548 |
0.9204 |
0.7062 |
cosine_precision@1 |
0.6571 |
0.1243 |
0.2956 |
0.3495 |
0.4113 |
0.2943 |
0.0971 |
cosine_precision@20 |
0.5024 |
0.4897 |
0.4246 |
0.1733 |
0.0892 |
0.0731 |
0.0314 |
cosine_precision@50 |
0.308 |
0.3179 |
0.2814 |
0.0944 |
0.0418 |
0.0361 |
0.0185 |
cosine_precision@100 |
0.1863 |
0.1986 |
0.1801 |
0.0589 |
0.0229 |
0.0206 |
0.0116 |
cosine_precision@150 |
0.1322 |
0.1469 |
0.1362 |
0.0458 |
0.0159 |
0.0147 |
0.0087 |
cosine_precision@200 |
0.103 |
0.1179 |
0.1105 |
0.0385 |
0.0122 |
0.0116 |
0.0071 |
cosine_recall@1 |
0.068 |
0.0031 |
0.0111 |
0.0273 |
0.1565 |
0.1109 |
0.0329 |
cosine_recall@20 |
0.5385 |
0.3221 |
0.2614 |
0.1766 |
0.6594 |
0.5344 |
0.2091 |
cosine_recall@50 |
0.726 |
0.4638 |
0.3835 |
0.2393 |
0.7705 |
0.6585 |
0.3054 |
cosine_recall@100 |
0.8329 |
0.5438 |
0.4677 |
0.2863 |
0.8472 |
0.7525 |
0.3835 |
cosine_recall@150 |
0.8745 |
0.5825 |
0.5183 |
0.3287 |
0.8825 |
0.8026 |
0.4309 |
cosine_recall@200 |
0.9057 |
0.6147 |
0.5517 |
0.3631 |
0.9051 |
0.8418 |
0.4715 |
cosine_ndcg@1 |
0.6571 |
0.1243 |
0.2956 |
0.3495 |
0.4113 |
0.2943 |
0.0971 |
cosine_ndcg@20 |
0.6845 |
0.5385 |
0.4601 |
0.2468 |
0.5117 |
0.3919 |
0.1385 |
cosine_ndcg@50 |
0.704 |
0.5012 |
0.4229 |
0.2394 |
0.542 |
0.4256 |
0.1656 |
cosine_ndcg@100 |
0.7589 |
0.5147 |
0.4371 |
0.2619 |
0.5588 |
0.4462 |
0.1835 |
cosine_ndcg@150 |
0.7774 |
0.5348 |
0.4629 |
0.2787 |
0.5656 |
0.4561 |
0.1931 |
cosine_ndcg@200 |
0.7893 |
0.5505 |
0.4797 |
0.2919 |
0.5697 |
0.4632 |
0.2007 |
cosine_mrr@1 |
0.6571 |
0.1243 |
0.2956 |
0.3495 |
0.4113 |
0.2943 |
0.0971 |
cosine_mrr@20 |
0.8103 |
0.5515 |
0.4896 |
0.4485 |
0.4979 |
0.3779 |
0.1522 |
cosine_mrr@50 |
0.8103 |
0.5515 |
0.4909 |
0.4515 |
0.501 |
0.3815 |
0.1564 |
cosine_mrr@100 |
0.8103 |
0.5515 |
0.4911 |
0.4519 |
0.5018 |
0.3827 |
0.158 |
cosine_mrr@150 |
0.8103 |
0.5515 |
0.4912 |
0.4523 |
0.5021 |
0.3831 |
0.1585 |
cosine_mrr@200 |
0.8103 |
0.5515 |
0.4912 |
0.4525 |
0.5021 |
0.3832 |
0.1588 |
cosine_map@1 |
0.6571 |
0.1243 |
0.2956 |
0.3495 |
0.4113 |
0.2943 |
0.0971 |
cosine_map@20 |
0.5418 |
0.4028 |
0.3236 |
0.147 |
0.4264 |
0.3097 |
0.0875 |
cosine_map@50 |
0.5327 |
0.3422 |
0.2644 |
0.1267 |
0.4338 |
0.3174 |
0.093 |
cosine_map@100 |
0.5657 |
0.3395 |
0.2576 |
0.1326 |
0.436 |
0.3199 |
0.095 |
cosine_map@150 |
0.5734 |
0.3478 |
0.2669 |
0.1352 |
0.4366 |
0.3207 |
0.0957 |
cosine_map@200 |
0.5772 |
0.3534 |
0.2722 |
0.1368 |
0.4368 |
0.3212 |
0.0961 |
cosine_map@500 |
0.5814 |
0.3631 |
0.2833 |
0.1407 |
0.4373 |
0.3219 |
0.0971 |
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 3 tokens
- mean: 5.0 tokens
- max: 10 tokens
|
- min: 3 tokens
- mean: 5.01 tokens
- max: 13 tokens
|
- Samples:
anchor |
positive |
air commodore |
flight lieutenant |
command and control officer |
flight officer |
air commodore |
command and control officer |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 3 tokens
- mean: 11.05 tokens
- max: 45 tokens
|
- min: 3 tokens
- mean: 11.43 tokens
- max: 45 tokens
|
- Samples:
anchor |
positive |
Staffelkommandantin |
Kommodore |
Luftwaffenoffizierin |
Luftwaffenoffizier/Luftwaffenoffizierin |
Staffelkommandantin |
Luftwaffenoffizierin |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 3 tokens
- mean: 12.95 tokens
- max: 50 tokens
|
- min: 3 tokens
- mean: 12.57 tokens
- max: 50 tokens
|
- Samples:
anchor |
positive |
jefe de escuadrón |
instructor |
comandante de aeronave |
instructor de simulador |
instructor |
oficial del Ejército del Aire |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 4 tokens
- mean: 8.36 tokens
- max: 20 tokens
|
- min: 4 tokens
- mean: 8.95 tokens
- max: 27 tokens
|
- Samples:
anchor |
positive |
技术总监 |
技术和运营总监 |
技术总监 |
技术主管 |
技术总监 |
技术艺术总监 |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 2 tokens
- mean: 5.65 tokens
- max: 14 tokens
|
- min: 2 tokens
- mean: 10.08 tokens
- max: 30 tokens
|
- Samples:
anchor |
positive |
technical manager |
Technischer Direktor für Bühne, Film und Fernsehen |
head of technical |
directora técnica |
head of technical department |
技术艺术总监 |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
gradient_accumulation_steps
: 2
num_train_epochs
: 5
warmup_ratio
: 0.05
log_on_each_node
: False
fp16
: True
dataloader_num_workers
: 4
ddp_find_unused_parameters
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 128
per_device_eval_batch_size
: 128
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 2
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.05
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: False
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: True
dataloader_num_workers
: 4
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: True
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
full_en_cosine_ndcg@200 |
full_es_cosine_ndcg@200 |
full_de_cosine_ndcg@200 |
full_zh_cosine_ndcg@200 |
mix_es_cosine_ndcg@200 |
mix_de_cosine_ndcg@200 |
mix_zh_cosine_ndcg@200 |
-1 |
-1 |
- |
0.7322 |
0.4690 |
0.3853 |
0.2723 |
0.3209 |
0.2244 |
0.0919 |
0.0021 |
1 |
23.8878 |
- |
- |
- |
- |
- |
- |
- |
0.2058 |
100 |
7.2098 |
- |
- |
- |
- |
- |
- |
- |
0.4115 |
200 |
4.2635 |
0.7800 |
0.5132 |
0.4268 |
0.2798 |
0.4372 |
0.2996 |
0.1447 |
0.6173 |
300 |
4.1931 |
- |
- |
- |
- |
- |
- |
- |
0.8230 |
400 |
3.73 |
0.7863 |
0.5274 |
0.4451 |
0.2805 |
0.4762 |
0.3455 |
0.1648 |
1.0309 |
500 |
3.3569 |
- |
- |
- |
- |
- |
- |
- |
1.2366 |
600 |
3.6464 |
0.7868 |
0.5372 |
0.4540 |
0.2813 |
0.5063 |
0.3794 |
0.1755 |
1.4424 |
700 |
3.0772 |
- |
- |
- |
- |
- |
- |
- |
1.6481 |
800 |
3.114 |
0.7906 |
0.5391 |
0.4576 |
0.2832 |
0.5221 |
0.4047 |
0.1779 |
1.8539 |
900 |
2.9246 |
- |
- |
- |
- |
- |
- |
- |
2.0617 |
1000 |
2.7479 |
0.7873 |
0.5423 |
0.4631 |
0.2871 |
0.5323 |
0.4143 |
0.1843 |
2.2675 |
1100 |
3.049 |
- |
- |
- |
- |
- |
- |
- |
2.4733 |
1200 |
2.6137 |
0.7878 |
0.5418 |
0.4685 |
0.2870 |
0.5470 |
0.4339 |
0.1932 |
2.6790 |
1300 |
2.8607 |
- |
- |
- |
- |
- |
- |
- |
2.8848 |
1400 |
2.7071 |
0.7889 |
0.5465 |
0.4714 |
0.2891 |
0.5504 |
0.4362 |
0.1944 |
3.0926 |
1500 |
2.7012 |
- |
- |
- |
- |
- |
- |
- |
3.2984 |
1600 |
2.7423 |
0.7882 |
0.5471 |
0.4748 |
0.2868 |
0.5542 |
0.4454 |
0.1976 |
3.5041 |
1700 |
2.5316 |
- |
- |
- |
- |
- |
- |
- |
3.7099 |
1800 |
2.6344 |
0.7900 |
0.5498 |
0.4763 |
0.2857 |
0.5639 |
0.4552 |
0.1954 |
3.9156 |
1900 |
2.4983 |
- |
- |
- |
- |
- |
- |
- |
4.1235 |
2000 |
2.5423 |
0.7894 |
0.5499 |
0.4786 |
0.2870 |
0.5644 |
0.4576 |
0.1974 |
4.3292 |
2100 |
2.5674 |
- |
- |
- |
- |
- |
- |
- |
4.5350 |
2200 |
2.6237 |
0.7899 |
0.5502 |
0.4802 |
0.2843 |
0.5674 |
0.4607 |
0.1993 |
4.7407 |
2300 |
2.3776 |
- |
- |
- |
- |
- |
- |
- |
4.9465 |
2400 |
2.1116 |
0.7893 |
0.5505 |
0.4797 |
0.2919 |
0.5697 |
0.4632 |
0.2007 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}