Job - Job matching Alibaba-NLP/gte-multilingual-base pruned

Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-pruned")
# Run inference
sentences = [
    'Entwicklerin für mobile Anwendungen',
    'Mergers-and-Acquisitions-Analyst/Mergers-and-Acquisitions-Analystin',
    'fashion design expert',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric full_en full_es full_de full_zh mix_es mix_de mix_zh
cosine_accuracy@1 0.6476 0.1189 0.2956 0.6602 0.6297 0.5564 0.6086
cosine_accuracy@20 0.9714 1.0 0.9704 0.9709 0.9106 0.8866 0.9593
cosine_accuracy@50 0.9905 1.0 0.9754 0.9903 0.9496 0.9381 0.9791
cosine_accuracy@100 0.9905 1.0 0.9901 0.9903 0.973 0.9594 0.9875
cosine_accuracy@150 0.9905 1.0 0.9901 0.9903 0.9834 0.9709 0.9911
cosine_accuracy@200 0.9905 1.0 0.9901 0.9903 0.9901 0.9776 0.9937
cosine_precision@1 0.6476 0.1189 0.2956 0.6602 0.6297 0.5564 0.6086
cosine_precision@20 0.4795 0.5268 0.4291 0.4481 0.1117 0.1095 0.1266
cosine_precision@50 0.2884 0.3438 0.298 0.2713 0.0485 0.0481 0.0552
cosine_precision@100 0.173 0.219 0.1943 0.1665 0.0254 0.0253 0.0287
cosine_precision@150 0.1244 0.1658 0.1482 0.1211 0.0172 0.0173 0.0194
cosine_precision@200 0.0986 0.1333 0.1198 0.0953 0.0131 0.0131 0.0147
cosine_recall@1 0.0661 0.0036 0.0111 0.0661 0.2434 0.2093 0.2044
cosine_recall@20 0.5122 0.3541 0.2668 0.4841 0.8288 0.7989 0.8346
cosine_recall@50 0.6835 0.5098 0.4092 0.6568 0.8987 0.8741 0.9096
cosine_recall@100 0.79 0.6076 0.5098 0.7685 0.9399 0.9173 0.9476
cosine_recall@150 0.84 0.6705 0.5729 0.8278 0.9577 0.9424 0.9609
cosine_recall@200 0.8759 0.7125 0.612 0.8617 0.9695 0.9536 0.9698
cosine_ndcg@1 0.6476 0.1189 0.2956 0.6602 0.6297 0.5564 0.6086
cosine_ndcg@20 0.6468 0.5708 0.4696 0.6231 0.701 0.6541 0.6853
cosine_ndcg@50 0.658 0.5355 0.4449 0.6383 0.7201 0.6748 0.7067
cosine_ndcg@100 0.7095 0.559 0.467 0.6917 0.7291 0.6845 0.7154
cosine_ndcg@150 0.731 0.59 0.4982 0.7167 0.7326 0.6894 0.7181
cosine_ndcg@200 0.7461 0.6095 0.5165 0.7303 0.7347 0.6915 0.7198
cosine_mrr@1 0.6476 0.1189 0.2956 0.6602 0.6297 0.5564 0.6086
cosine_mrr@20 0.7902 0.5532 0.5047 0.8016 0.7037 0.6477 0.7237
cosine_mrr@50 0.791 0.5532 0.5048 0.8021 0.705 0.6494 0.7243
cosine_mrr@100 0.791 0.5532 0.505 0.8021 0.7053 0.6497 0.7245
cosine_mrr@150 0.791 0.5532 0.505 0.8021 0.7054 0.6498 0.7245
cosine_mrr@200 0.791 0.5532 0.505 0.8021 0.7055 0.6498 0.7245
cosine_map@1 0.6476 0.1189 0.2956 0.6602 0.6297 0.5564 0.6086
cosine_map@20 0.5026 0.4379 0.3366 0.475 0.6194 0.5648 0.5652
cosine_map@50 0.484 0.3739 0.2853 0.4579 0.6244 0.57 0.5716
cosine_map@100 0.5118 0.3763 0.2818 0.4848 0.6257 0.5714 0.5731
cosine_map@150 0.5202 0.3892 0.2931 0.4937 0.626 0.5719 0.5734
cosine_map@200 0.5249 0.3958 0.2988 0.4978 0.6262 0.572 0.5735
cosine_map@500 0.5304 0.4063 0.3109 0.504 0.6263 0.5723 0.5736

Training Details

Training Dataset

Unnamed Dataset

  • Size: 86,648 training samples
  • Columns: sentence and label
  • Approximate statistics based on the first 1000 samples:
    sentence label
    type string list
    details
    • min: 2 tokens
    • mean: 8.25 tokens
    • max: 54 tokens
    • size: 768 elements
  • Samples:
    sentence label
    [-0.07171934843063354, 0.03595816716551781, -0.029780959710478783, 0.006593302357941866, 0.040611181408166885, ...]
    airport environment officer [-0.022075481712818146, 0.02999737113714218, -0.02189866080880165, 0.016531817615032196, 0.012234307825565338, ...]
    Flake操作员 [-0.04815564677119255, 0.023524893447756767, -0.01583661139011383, 0.042527906596660614, 0.03815540298819542, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 2
  • learning_rate: 0.0001
  • num_train_epochs: 5
  • warmup_ratio: 0.05
  • log_on_each_node: False
  • fp16: True
  • dataloader_num_workers: 4
  • ddp_find_unused_parameters: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 0.0001
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: False
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: True
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss full_en_cosine_ndcg@200 full_es_cosine_ndcg@200 full_de_cosine_ndcg@200 full_zh_cosine_ndcg@200 mix_es_cosine_ndcg@200 mix_de_cosine_ndcg@200 mix_zh_cosine_ndcg@200
-1 -1 - 0.5348 0.4311 0.3678 0.5333 0.2580 0.1924 0.2871
0.0030 1 0.0017 - - - - - - -
0.2959 100 0.001 - - - - - - -
0.5917 200 0.0005 0.6702 0.5287 0.4566 0.6809 0.5864 0.5302 0.4739
0.8876 300 0.0004 - - - - - - -
1.1834 400 0.0004 0.7057 0.5643 0.4790 0.7033 0.6604 0.6055 0.6003
1.4793 500 0.0004 - - - - - - -
1.7751 600 0.0003 0.7184 0.5783 0.4910 0.7127 0.6927 0.6416 0.6485
2.0710 700 0.0003 - - - - - - -
2.3669 800 0.0003 0.7307 0.5938 0.5023 0.7233 0.7125 0.6639 0.6847
2.6627 900 0.0003 - - - - - - -
2.9586 1000 0.0003 0.7371 0.6002 0.5085 0.7228 0.7222 0.6761 0.6998
3.2544 1100 0.0003 - - - - - - -
3.5503 1200 0.0003 0.7402 0.6059 0.5109 0.7279 0.7285 0.6841 0.7120
3.8462 1300 0.0003 - - - - - - -
4.1420 1400 0.0003 0.7449 0.6083 0.5154 0.7294 0.7333 0.6894 0.7176
4.4379 1500 0.0003 - - - - - - -
4.7337 1600 0.0003 0.7461 0.6095 0.5165 0.7303 0.7347 0.6915 0.7198

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including pj-mathematician/JobGTE-multilingual-base-pruned

Evaluation results