Job - Job matching Alibaba-NLP/gte-multilingual-base (v1)
Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Datasets:
- full_en
- full_de
- full_es
- full_zh
- mix
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v1")
sentences = [
'Volksvertreter',
'Parlamentarier',
'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
full_en |
full_es |
full_de |
full_zh |
mix_es |
mix_de |
mix_zh |
cosine_accuracy@1 |
0.6571 |
0.1243 |
0.2956 |
0.6602 |
0.728 |
0.6703 |
0.1908 |
cosine_accuracy@20 |
0.9905 |
1.0 |
0.9704 |
0.9806 |
0.96 |
0.9506 |
1.0 |
cosine_accuracy@50 |
0.9905 |
1.0 |
0.9852 |
0.9903 |
0.9792 |
0.9776 |
1.0 |
cosine_accuracy@100 |
0.9905 |
1.0 |
0.9852 |
0.9903 |
0.9943 |
0.9865 |
1.0 |
cosine_accuracy@150 |
0.9905 |
1.0 |
0.9901 |
0.9903 |
0.9958 |
0.9932 |
1.0 |
cosine_accuracy@200 |
0.9905 |
1.0 |
0.9901 |
0.9903 |
0.9974 |
0.9948 |
1.0 |
cosine_precision@1 |
0.6571 |
0.1243 |
0.2956 |
0.6602 |
0.728 |
0.6703 |
0.1908 |
cosine_precision@20 |
0.5171 |
0.5719 |
0.5084 |
0.4782 |
0.1243 |
0.1252 |
0.1544 |
cosine_precision@50 |
0.316 |
0.3885 |
0.3654 |
0.2895 |
0.0515 |
0.0523 |
0.0618 |
cosine_precision@100 |
0.189 |
0.2517 |
0.2413 |
0.1757 |
0.0263 |
0.0267 |
0.0309 |
cosine_precision@150 |
0.1338 |
0.1905 |
0.1804 |
0.126 |
0.0176 |
0.018 |
0.0206 |
cosine_precision@200 |
0.1043 |
0.1522 |
0.1447 |
0.0982 |
0.0133 |
0.0135 |
0.0154 |
cosine_recall@1 |
0.0678 |
0.0037 |
0.0111 |
0.0615 |
0.2813 |
0.2524 |
0.0614 |
cosine_recall@20 |
0.547 |
0.3842 |
0.3221 |
0.5108 |
0.9183 |
0.9096 |
1.0 |
cosine_recall@50 |
0.74 |
0.5641 |
0.5025 |
0.6923 |
0.9499 |
0.9482 |
1.0 |
cosine_recall@100 |
0.8453 |
0.6742 |
0.6248 |
0.8004 |
0.9701 |
0.9685 |
1.0 |
cosine_recall@150 |
0.8838 |
0.7464 |
0.683 |
0.8465 |
0.9768 |
0.9782 |
1.0 |
cosine_recall@200 |
0.9109 |
0.7825 |
0.7216 |
0.8771 |
0.9818 |
0.981 |
1.0 |
cosine_ndcg@1 |
0.6571 |
0.1243 |
0.2956 |
0.6602 |
0.728 |
0.6703 |
0.1908 |
cosine_ndcg@20 |
0.6954 |
0.6139 |
0.5393 |
0.654 |
0.8044 |
0.7736 |
0.5474 |
cosine_ndcg@50 |
0.715 |
0.5874 |
0.5267 |
0.6707 |
0.813 |
0.7844 |
0.5474 |
cosine_ndcg@100 |
0.7679 |
0.6144 |
0.5579 |
0.7234 |
0.8173 |
0.7889 |
0.5474 |
cosine_ndcg@150 |
0.7857 |
0.6499 |
0.588 |
0.7438 |
0.8186 |
0.7909 |
0.5474 |
cosine_ndcg@200 |
0.797 |
0.6681 |
0.6071 |
0.7554 |
0.8195 |
0.7914 |
0.5474 |
cosine_mrr@1 |
0.6571 |
0.1243 |
0.2956 |
0.6602 |
0.728 |
0.6703 |
0.1908 |
cosine_mrr@20 |
0.8138 |
0.5581 |
0.5104 |
0.8037 |
0.7969 |
0.752 |
0.4093 |
cosine_mrr@50 |
0.8138 |
0.5581 |
0.511 |
0.8041 |
0.7975 |
0.7529 |
0.4093 |
cosine_mrr@100 |
0.8138 |
0.5581 |
0.511 |
0.8041 |
0.7977 |
0.7531 |
0.4093 |
cosine_mrr@150 |
0.8138 |
0.5581 |
0.511 |
0.8041 |
0.7977 |
0.7531 |
0.4093 |
cosine_mrr@200 |
0.8138 |
0.5581 |
0.511 |
0.8041 |
0.7977 |
0.7531 |
0.4093 |
cosine_map@1 |
0.6571 |
0.1243 |
0.2956 |
0.6602 |
0.728 |
0.6703 |
0.1908 |
cosine_map@20 |
0.5579 |
0.4799 |
0.401 |
0.5087 |
0.7351 |
0.6968 |
0.3298 |
cosine_map@50 |
0.5471 |
0.425 |
0.3588 |
0.4926 |
0.7374 |
0.6996 |
0.3298 |
cosine_map@100 |
0.5796 |
0.4302 |
0.3633 |
0.5217 |
0.738 |
0.7003 |
0.3298 |
cosine_map@150 |
0.5875 |
0.4459 |
0.3777 |
0.5299 |
0.7381 |
0.7004 |
0.3298 |
cosine_map@200 |
0.5912 |
0.4533 |
0.3848 |
0.5334 |
0.7382 |
0.7005 |
0.3298 |
cosine_map@500 |
0.5953 |
0.4656 |
0.3978 |
0.5386 |
0.7383 |
0.7006 |
0.3298 |
Training Details
Training Datasets
full_en
full_en
- Dataset: full_en
- Size: 28,880 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 3 tokens
- mean: 5.68 tokens
- max: 11 tokens
|
- min: 3 tokens
- mean: 5.76 tokens
- max: 12 tokens
|
- Samples:
anchor |
positive |
air commodore |
flight lieutenant |
command and control officer |
flight officer |
air commodore |
command and control officer |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_de
full_de
- Dataset: full_de
- Size: 23,023 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 3 tokens
- mean: 7.99 tokens
- max: 30 tokens
|
- min: 3 tokens
- mean: 8.19 tokens
- max: 30 tokens
|
- Samples:
anchor |
positive |
Staffelkommandantin |
Kommodore |
Luftwaffenoffizierin |
Luftwaffenoffizier/Luftwaffenoffizierin |
Staffelkommandantin |
Luftwaffenoffizierin |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_es
full_es
- Dataset: full_es
- Size: 20,724 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 3 tokens
- mean: 9.13 tokens
- max: 32 tokens
|
- min: 3 tokens
- mean: 8.84 tokens
- max: 32 tokens
|
- Samples:
anchor |
positive |
jefe de escuadrón |
instructor |
comandante de aeronave |
instructor de simulador |
instructor |
oficial del Ejército del Aire |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
full_zh
full_zh
- Dataset: full_zh
- Size: 30,401 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 5 tokens
- mean: 7.15 tokens
- max: 14 tokens
|
- min: 5 tokens
- mean: 7.46 tokens
- max: 21 tokens
|
- Samples:
anchor |
positive |
技术总监 |
技术和运营总监 |
技术总监 |
技术主管 |
技术总监 |
技术艺术总监 |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
mix
mix
- Dataset: mix
- Size: 21,760 training samples
- Columns:
anchor
and positive
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
type |
string |
string |
details |
- min: 2 tokens
- mean: 6.71 tokens
- max: 19 tokens
|
- min: 2 tokens
- mean: 7.69 tokens
- max: 19 tokens
|
- Samples:
anchor |
positive |
technical manager |
Technischer Direktor für Bühne, Film und Fernsehen |
head of technical |
directora técnica |
head of technical department |
技术艺术总监 |
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 128
gradient_accumulation_steps
: 2
num_train_epochs
: 5
warmup_ratio
: 0.05
log_on_each_node
: False
fp16
: True
dataloader_num_workers
: 4
ddp_find_unused_parameters
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 128
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 2
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.05
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: False
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: True
dataloader_num_workers
: 4
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: True
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
full_en_cosine_ndcg@200 |
full_es_cosine_ndcg@200 |
full_de_cosine_ndcg@200 |
full_zh_cosine_ndcg@200 |
mix_es_cosine_ndcg@200 |
mix_de_cosine_ndcg@200 |
mix_zh_cosine_ndcg@200 |
-1 |
-1 |
- |
0.7447 |
0.6125 |
0.5378 |
0.7240 |
0.7029 |
0.6345 |
0.5531 |
0.0010 |
1 |
3.4866 |
- |
- |
- |
- |
- |
- |
- |
0.1027 |
100 |
2.5431 |
- |
- |
- |
- |
- |
- |
- |
0.2053 |
200 |
1.4536 |
0.7993 |
0.6633 |
0.5974 |
0.7642 |
0.7567 |
0.7011 |
0.5498 |
0.3080 |
300 |
1.1018 |
- |
- |
- |
- |
- |
- |
- |
0.4107 |
400 |
0.9184 |
0.7925 |
0.6586 |
0.6058 |
0.7587 |
0.7749 |
0.7278 |
0.5486 |
0.5133 |
500 |
0.8973 |
- |
- |
- |
- |
- |
- |
- |
0.6160 |
600 |
0.7309 |
0.7951 |
0.6671 |
0.6096 |
0.7708 |
0.7793 |
0.7339 |
0.5525 |
0.7187 |
700 |
0.7297 |
- |
- |
- |
- |
- |
- |
- |
0.8214 |
800 |
0.7281 |
0.7929 |
0.6711 |
0.6088 |
0.7645 |
0.7899 |
0.7444 |
0.5479 |
0.9240 |
900 |
0.6607 |
- |
- |
- |
- |
- |
- |
- |
1.0267 |
1000 |
0.6075 |
0.7915 |
0.6659 |
0.6088 |
0.7665 |
0.7968 |
0.7588 |
0.5482 |
1.1294 |
1100 |
0.4553 |
- |
- |
- |
- |
- |
- |
- |
1.2320 |
1200 |
0.4775 |
0.7979 |
0.6696 |
0.6033 |
0.7669 |
0.7959 |
0.7624 |
0.5484 |
1.3347 |
1300 |
0.4838 |
- |
- |
- |
- |
- |
- |
- |
1.4374 |
1400 |
0.4912 |
0.7973 |
0.6757 |
0.6112 |
0.7656 |
0.7978 |
0.7650 |
0.5487 |
1.5400 |
1500 |
0.4732 |
- |
- |
- |
- |
- |
- |
- |
1.6427 |
1600 |
0.5269 |
0.8031 |
0.6723 |
0.6108 |
0.7654 |
0.8008 |
0.7660 |
0.5492 |
1.7454 |
1700 |
0.4822 |
- |
- |
- |
- |
- |
- |
- |
1.8480 |
1800 |
0.5072 |
0.7962 |
0.6668 |
0.6051 |
0.7592 |
0.8001 |
0.7714 |
0.5486 |
1.9507 |
1900 |
0.4709 |
- |
- |
- |
- |
- |
- |
- |
2.0544 |
2000 |
0.3772 |
0.7940 |
0.6647 |
0.6037 |
0.7579 |
0.8064 |
0.7732 |
0.5479 |
2.1571 |
2100 |
0.3982 |
- |
- |
- |
- |
- |
- |
- |
2.2598 |
2200 |
0.3073 |
0.7969 |
0.6652 |
0.6005 |
0.7625 |
0.8054 |
0.7734 |
0.5493 |
2.3624 |
2300 |
0.383 |
- |
- |
- |
- |
- |
- |
- |
2.4651 |
2400 |
0.3687 |
0.7925 |
0.6690 |
0.5987 |
0.7583 |
0.8081 |
0.7735 |
0.5477 |
2.5678 |
2500 |
0.3472 |
- |
- |
- |
- |
- |
- |
- |
2.6704 |
2600 |
0.3557 |
0.7956 |
0.6758 |
0.6019 |
0.7659 |
0.8082 |
0.7767 |
0.5491 |
2.7731 |
2700 |
0.3527 |
- |
- |
- |
- |
- |
- |
- |
2.8758 |
2800 |
0.3446 |
0.7945 |
0.6719 |
0.6020 |
0.7616 |
0.8124 |
0.7818 |
0.5496 |
2.9784 |
2900 |
0.3566 |
- |
- |
- |
- |
- |
- |
- |
3.0821 |
3000 |
0.3252 |
0.7948 |
0.6682 |
0.6025 |
0.7617 |
0.8152 |
0.7848 |
0.5516 |
3.1848 |
3100 |
0.2968 |
- |
- |
- |
- |
- |
- |
- |
3.2875 |
3200 |
0.2962 |
0.7953 |
0.6717 |
0.6086 |
0.7613 |
0.8110 |
0.7824 |
0.5482 |
3.3901 |
3300 |
0.3084 |
- |
- |
- |
- |
- |
- |
- |
3.4928 |
3400 |
0.2909 |
0.7940 |
0.6634 |
0.6023 |
0.7615 |
0.8138 |
0.7822 |
0.5457 |
3.5955 |
3500 |
0.2964 |
- |
- |
- |
- |
- |
- |
- |
3.6982 |
3600 |
0.3193 |
0.7960 |
0.6635 |
0.6070 |
0.7534 |
0.8164 |
0.7844 |
0.5467 |
3.8008 |
3700 |
0.3514 |
- |
- |
- |
- |
- |
- |
- |
3.9035 |
3800 |
0.3147 |
0.7973 |
0.6696 |
0.6125 |
0.7616 |
0.8176 |
0.7885 |
0.5469 |
4.0062 |
3900 |
0.2738 |
- |
- |
- |
- |
- |
- |
- |
4.1088 |
4000 |
0.2842 |
0.7960 |
0.6672 |
0.6082 |
0.7536 |
0.8174 |
0.7891 |
0.5479 |
4.2115 |
4100 |
0.2739 |
- |
- |
- |
- |
- |
- |
- |
4.3142 |
4200 |
0.2704 |
0.7979 |
0.6681 |
0.6111 |
0.7540 |
0.8180 |
0.7891 |
0.5476 |
4.4168 |
4300 |
0.2529 |
- |
- |
- |
- |
- |
- |
- |
4.5195 |
4400 |
0.272 |
0.7968 |
0.6685 |
0.6087 |
0.7564 |
0.8185 |
0.7901 |
0.5476 |
4.6222 |
4500 |
0.3 |
- |
- |
- |
- |
- |
- |
- |
4.7248 |
4600 |
0.2598 |
0.7972 |
0.6675 |
0.6072 |
0.7556 |
0.8190 |
0.7909 |
0.5478 |
4.8275 |
4700 |
0.3101 |
- |
- |
- |
- |
- |
- |
- |
4.9302 |
4800 |
0.2524 |
0.7970 |
0.6681 |
0.6071 |
0.7554 |
0.8195 |
0.7914 |
0.5474 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}