Job - Job matching Alibaba-NLP/gte-multilingual-base (v1)

Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-multilingual-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • full_en
    • full_de
    • full_es
    • full_zh
    • mix

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v1")
# Run inference
sentences = [
    'Volksvertreter',
    'Parlamentarier',
    'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric full_en full_es full_de full_zh mix_es mix_de mix_zh
cosine_accuracy@1 0.6571 0.1243 0.2956 0.6602 0.728 0.6703 0.1908
cosine_accuracy@20 0.9905 1.0 0.9704 0.9806 0.96 0.9506 1.0
cosine_accuracy@50 0.9905 1.0 0.9852 0.9903 0.9792 0.9776 1.0
cosine_accuracy@100 0.9905 1.0 0.9852 0.9903 0.9943 0.9865 1.0
cosine_accuracy@150 0.9905 1.0 0.9901 0.9903 0.9958 0.9932 1.0
cosine_accuracy@200 0.9905 1.0 0.9901 0.9903 0.9974 0.9948 1.0
cosine_precision@1 0.6571 0.1243 0.2956 0.6602 0.728 0.6703 0.1908
cosine_precision@20 0.5171 0.5719 0.5084 0.4782 0.1243 0.1252 0.1544
cosine_precision@50 0.316 0.3885 0.3654 0.2895 0.0515 0.0523 0.0618
cosine_precision@100 0.189 0.2517 0.2413 0.1757 0.0263 0.0267 0.0309
cosine_precision@150 0.1338 0.1905 0.1804 0.126 0.0176 0.018 0.0206
cosine_precision@200 0.1043 0.1522 0.1447 0.0982 0.0133 0.0135 0.0154
cosine_recall@1 0.0678 0.0037 0.0111 0.0615 0.2813 0.2524 0.0614
cosine_recall@20 0.547 0.3842 0.3221 0.5108 0.9183 0.9096 1.0
cosine_recall@50 0.74 0.5641 0.5025 0.6923 0.9499 0.9482 1.0
cosine_recall@100 0.8453 0.6742 0.6248 0.8004 0.9701 0.9685 1.0
cosine_recall@150 0.8838 0.7464 0.683 0.8465 0.9768 0.9782 1.0
cosine_recall@200 0.9109 0.7825 0.7216 0.8771 0.9818 0.981 1.0
cosine_ndcg@1 0.6571 0.1243 0.2956 0.6602 0.728 0.6703 0.1908
cosine_ndcg@20 0.6954 0.6139 0.5393 0.654 0.8044 0.7736 0.5474
cosine_ndcg@50 0.715 0.5874 0.5267 0.6707 0.813 0.7844 0.5474
cosine_ndcg@100 0.7679 0.6144 0.5579 0.7234 0.8173 0.7889 0.5474
cosine_ndcg@150 0.7857 0.6499 0.588 0.7438 0.8186 0.7909 0.5474
cosine_ndcg@200 0.797 0.6681 0.6071 0.7554 0.8195 0.7914 0.5474
cosine_mrr@1 0.6571 0.1243 0.2956 0.6602 0.728 0.6703 0.1908
cosine_mrr@20 0.8138 0.5581 0.5104 0.8037 0.7969 0.752 0.4093
cosine_mrr@50 0.8138 0.5581 0.511 0.8041 0.7975 0.7529 0.4093
cosine_mrr@100 0.8138 0.5581 0.511 0.8041 0.7977 0.7531 0.4093
cosine_mrr@150 0.8138 0.5581 0.511 0.8041 0.7977 0.7531 0.4093
cosine_mrr@200 0.8138 0.5581 0.511 0.8041 0.7977 0.7531 0.4093
cosine_map@1 0.6571 0.1243 0.2956 0.6602 0.728 0.6703 0.1908
cosine_map@20 0.5579 0.4799 0.401 0.5087 0.7351 0.6968 0.3298
cosine_map@50 0.5471 0.425 0.3588 0.4926 0.7374 0.6996 0.3298
cosine_map@100 0.5796 0.4302 0.3633 0.5217 0.738 0.7003 0.3298
cosine_map@150 0.5875 0.4459 0.3777 0.5299 0.7381 0.7004 0.3298
cosine_map@200 0.5912 0.4533 0.3848 0.5334 0.7382 0.7005 0.3298
cosine_map@500 0.5953 0.4656 0.3978 0.5386 0.7383 0.7006 0.3298

Training Details

Training Datasets

full_en

full_en

  • Dataset: full_en
  • Size: 28,880 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 5.68 tokens
    • max: 11 tokens
    • min: 3 tokens
    • mean: 5.76 tokens
    • max: 12 tokens
  • Samples:
    anchor positive
    air commodore flight lieutenant
    command and control officer flight officer
    air commodore command and control officer
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_de

full_de

  • Dataset: full_de
  • Size: 23,023 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 7.99 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 8.19 tokens
    • max: 30 tokens
  • Samples:
    anchor positive
    Staffelkommandantin Kommodore
    Luftwaffenoffizierin Luftwaffenoffizier/Luftwaffenoffizierin
    Staffelkommandantin Luftwaffenoffizierin
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_es

full_es

  • Dataset: full_es
  • Size: 20,724 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 9.13 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 8.84 tokens
    • max: 32 tokens
  • Samples:
    anchor positive
    jefe de escuadrón instructor
    comandante de aeronave instructor de simulador
    instructor oficial del Ejército del Aire
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_zh

full_zh

  • Dataset: full_zh
  • Size: 30,401 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 7.15 tokens
    • max: 14 tokens
    • min: 5 tokens
    • mean: 7.46 tokens
    • max: 21 tokens
  • Samples:
    anchor positive
    技术总监 技术和运营总监
    技术总监 技术主管
    技术总监 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
mix

mix

  • Dataset: mix
  • Size: 21,760 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 2 tokens
    • mean: 6.71 tokens
    • max: 19 tokens
    • min: 2 tokens
    • mean: 7.69 tokens
    • max: 19 tokens
  • Samples:
    anchor positive
    technical manager Technischer Direktor für Bühne, Film und Fernsehen
    head of technical directora técnica
    head of technical department 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 2
  • num_train_epochs: 5
  • warmup_ratio: 0.05
  • log_on_each_node: False
  • fp16: True
  • dataloader_num_workers: 4
  • ddp_find_unused_parameters: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: False
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: True
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss full_en_cosine_ndcg@200 full_es_cosine_ndcg@200 full_de_cosine_ndcg@200 full_zh_cosine_ndcg@200 mix_es_cosine_ndcg@200 mix_de_cosine_ndcg@200 mix_zh_cosine_ndcg@200
-1 -1 - 0.7447 0.6125 0.5378 0.7240 0.7029 0.6345 0.5531
0.0010 1 3.4866 - - - - - - -
0.1027 100 2.5431 - - - - - - -
0.2053 200 1.4536 0.7993 0.6633 0.5974 0.7642 0.7567 0.7011 0.5498
0.3080 300 1.1018 - - - - - - -
0.4107 400 0.9184 0.7925 0.6586 0.6058 0.7587 0.7749 0.7278 0.5486
0.5133 500 0.8973 - - - - - - -
0.6160 600 0.7309 0.7951 0.6671 0.6096 0.7708 0.7793 0.7339 0.5525
0.7187 700 0.7297 - - - - - - -
0.8214 800 0.7281 0.7929 0.6711 0.6088 0.7645 0.7899 0.7444 0.5479
0.9240 900 0.6607 - - - - - - -
1.0267 1000 0.6075 0.7915 0.6659 0.6088 0.7665 0.7968 0.7588 0.5482
1.1294 1100 0.4553 - - - - - - -
1.2320 1200 0.4775 0.7979 0.6696 0.6033 0.7669 0.7959 0.7624 0.5484
1.3347 1300 0.4838 - - - - - - -
1.4374 1400 0.4912 0.7973 0.6757 0.6112 0.7656 0.7978 0.7650 0.5487
1.5400 1500 0.4732 - - - - - - -
1.6427 1600 0.5269 0.8031 0.6723 0.6108 0.7654 0.8008 0.7660 0.5492
1.7454 1700 0.4822 - - - - - - -
1.8480 1800 0.5072 0.7962 0.6668 0.6051 0.7592 0.8001 0.7714 0.5486
1.9507 1900 0.4709 - - - - - - -
2.0544 2000 0.3772 0.7940 0.6647 0.6037 0.7579 0.8064 0.7732 0.5479
2.1571 2100 0.3982 - - - - - - -
2.2598 2200 0.3073 0.7969 0.6652 0.6005 0.7625 0.8054 0.7734 0.5493
2.3624 2300 0.383 - - - - - - -
2.4651 2400 0.3687 0.7925 0.6690 0.5987 0.7583 0.8081 0.7735 0.5477
2.5678 2500 0.3472 - - - - - - -
2.6704 2600 0.3557 0.7956 0.6758 0.6019 0.7659 0.8082 0.7767 0.5491
2.7731 2700 0.3527 - - - - - - -
2.8758 2800 0.3446 0.7945 0.6719 0.6020 0.7616 0.8124 0.7818 0.5496
2.9784 2900 0.3566 - - - - - - -
3.0821 3000 0.3252 0.7948 0.6682 0.6025 0.7617 0.8152 0.7848 0.5516
3.1848 3100 0.2968 - - - - - - -
3.2875 3200 0.2962 0.7953 0.6717 0.6086 0.7613 0.8110 0.7824 0.5482
3.3901 3300 0.3084 - - - - - - -
3.4928 3400 0.2909 0.7940 0.6634 0.6023 0.7615 0.8138 0.7822 0.5457
3.5955 3500 0.2964 - - - - - - -
3.6982 3600 0.3193 0.7960 0.6635 0.6070 0.7534 0.8164 0.7844 0.5467
3.8008 3700 0.3514 - - - - - - -
3.9035 3800 0.3147 0.7973 0.6696 0.6125 0.7616 0.8176 0.7885 0.5469
4.0062 3900 0.2738 - - - - - - -
4.1088 4000 0.2842 0.7960 0.6672 0.6082 0.7536 0.8174 0.7891 0.5479
4.2115 4100 0.2739 - - - - - - -
4.3142 4200 0.2704 0.7979 0.6681 0.6111 0.7540 0.8180 0.7891 0.5476
4.4168 4300 0.2529 - - - - - - -
4.5195 4400 0.272 0.7968 0.6685 0.6087 0.7564 0.8185 0.7901 0.5476
4.6222 4500 0.3 - - - - - - -
4.7248 4600 0.2598 0.7972 0.6675 0.6072 0.7556 0.8190 0.7909 0.5478
4.8275 4700 0.3101 - - - - - - -
4.9302 4800 0.2524 0.7970 0.6681 0.6071 0.7554 0.8195 0.7914 0.5474

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for pj-mathematician/JobGTE-multilingual-base-v1

Finetuned
(66)
this model

Collection including pj-mathematician/JobGTE-multilingual-base-v1

Evaluation results