Job - Job matching Alibaba-NLP/gte-multilingual-base (v2)

Top performing model on TalentCLEF 2025 Task A. Use it for multilingual job title matching

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-multilingual-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Datasets:
    • full_en
    • full_de
    • full_es
    • full_zh
    • mix

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobGTE-multilingual-base-v2")
# Run inference
sentences = [
    'Volksvertreter',
    'Parlamentarier',
    'Oberbürgermeister',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric full_en full_es full_de full_zh mix_es mix_de mix_zh
cosine_accuracy@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_accuracy@20 0.9905 1.0 0.9754 0.9806 0.9553 0.9324 0.9843
cosine_accuracy@50 0.9905 1.0 0.9852 0.9903 0.9802 0.9683 0.9932
cosine_accuracy@100 0.9905 1.0 0.9901 0.9903 0.9901 0.9849 0.9958
cosine_accuracy@150 0.9905 1.0 0.9901 0.9903 0.9938 0.9886 0.9974
cosine_accuracy@200 0.9905 1.0 0.9901 0.9903 0.9958 0.9938 0.9979
cosine_precision@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_precision@20 0.5148 0.5759 0.5103 0.4883 0.1216 0.1209 0.1387
cosine_precision@50 0.32 0.3923 0.3694 0.2963 0.0512 0.0514 0.0581
cosine_precision@100 0.1905 0.2566 0.2397 0.1788 0.0261 0.0265 0.0296
cosine_precision@150 0.1362 0.1928 0.1808 0.1278 0.0175 0.0179 0.0199
cosine_precision@200 0.1054 0.1528 0.1462 0.0999 0.0132 0.0135 0.0149
cosine_recall@1 0.0685 0.0036 0.0111 0.0693 0.2738 0.2436 0.2569
cosine_recall@20 0.5491 0.3853 0.3208 0.5251 0.899 0.8787 0.9157
cosine_recall@50 0.7554 0.566 0.5042 0.7083 0.9459 0.932 0.9583
cosine_recall@100 0.8503 0.6899 0.6173 0.8169 0.9651 0.9596 0.9765
cosine_recall@150 0.8995 0.754 0.6848 0.8613 0.9732 0.9718 0.9834
cosine_recall@200 0.9208 0.7858 0.7253 0.8898 0.9791 0.98 0.9865
cosine_ndcg@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_ndcg@20 0.6952 0.6169 0.5378 0.6681 0.7815 0.7448 0.8002
cosine_ndcg@50 0.723 0.5914 0.5288 0.6857 0.7944 0.7595 0.8125
cosine_ndcg@100 0.7733 0.6235 0.5552 0.7379 0.7986 0.7657 0.8167
cosine_ndcg@150 0.7947 0.6557 0.5888 0.7577 0.8001 0.7682 0.8181
cosine_ndcg@200 0.8039 0.6717 0.6092 0.7697 0.8012 0.7696 0.8187
cosine_mrr@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_mrr@20 0.8183 0.5581 0.5165 0.8159 0.7804 0.7324 0.8422
cosine_mrr@50 0.8183 0.5581 0.5168 0.8163 0.7813 0.7335 0.8425
cosine_mrr@100 0.8183 0.5581 0.5168 0.8163 0.7814 0.7338 0.8425
cosine_mrr@150 0.8183 0.5581 0.5168 0.8163 0.7814 0.7338 0.8425
cosine_mrr@200 0.8183 0.5581 0.5168 0.8163 0.7814 0.7338 0.8426
cosine_map@1 0.6667 0.1243 0.2956 0.6796 0.7088 0.6485 0.7667
cosine_map@20 0.5566 0.4841 0.3984 0.5222 0.7071 0.6646 0.7007
cosine_map@50 0.5534 0.4304 0.3603 0.5083 0.7107 0.6684 0.7046
cosine_map@100 0.5852 0.4374 0.3632 0.5372 0.7113 0.6693 0.7054
cosine_map@150 0.5943 0.4527 0.3782 0.5454 0.7114 0.6695 0.7055
cosine_map@200 0.5976 0.4593 0.3863 0.5495 0.7115 0.6696 0.7056
cosine_map@500 0.6016 0.472 0.3992 0.5542 0.7116 0.6697 0.7057

Training Details

Training Datasets

full_en

full_en

  • Dataset: full_en
  • Size: 28,880 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 5.68 tokens
    • max: 11 tokens
    • min: 3 tokens
    • mean: 5.76 tokens
    • max: 12 tokens
  • Samples:
    anchor positive
    air commodore flight lieutenant
    command and control officer flight officer
    air commodore command and control officer
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_de

full_de

  • Dataset: full_de
  • Size: 23,023 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 7.99 tokens
    • max: 30 tokens
    • min: 3 tokens
    • mean: 8.19 tokens
    • max: 30 tokens
  • Samples:
    anchor positive
    Staffelkommandantin Kommodore
    Luftwaffenoffizierin Luftwaffenoffizier/Luftwaffenoffizierin
    Staffelkommandantin Luftwaffenoffizierin
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_es

full_es

  • Dataset: full_es
  • Size: 20,724 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 9.13 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 8.84 tokens
    • max: 32 tokens
  • Samples:
    anchor positive
    jefe de escuadrón instructor
    comandante de aeronave instructor de simulador
    instructor oficial del Ejército del Aire
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
full_zh

full_zh

  • Dataset: full_zh
  • Size: 30,401 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 7.15 tokens
    • max: 14 tokens
    • min: 5 tokens
    • mean: 7.46 tokens
    • max: 21 tokens
  • Samples:
    anchor positive
    技术总监 技术和运营总监
    技术总监 技术主管
    技术总监 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    
mix

mix

  • Dataset: mix
  • Size: 21,760 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 2 tokens
    • mean: 6.71 tokens
    • max: 19 tokens
    • min: 2 tokens
    • mean: 7.69 tokens
    • max: 19 tokens
  • Samples:
    anchor positive
    technical manager Technischer Direktor für Bühne, Film und Fernsehen
    head of technical directora técnica
    head of technical department 技术艺术总监
  • Loss: GISTEmbedLoss with these parameters:
    {'guide': SentenceTransformer(
      (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
      (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
      (2): Normalize()
    ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • gradient_accumulation_steps: 2
  • num_train_epochs: 5
  • warmup_ratio: 0.05
  • log_on_each_node: False
  • fp16: True
  • dataloader_num_workers: 4
  • ddp_find_unused_parameters: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: False
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: True
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss full_en_cosine_ndcg@200 full_es_cosine_ndcg@200 full_de_cosine_ndcg@200 full_zh_cosine_ndcg@200 mix_es_cosine_ndcg@200 mix_de_cosine_ndcg@200 mix_zh_cosine_ndcg@200
-1 -1 - 0.7447 0.6125 0.5378 0.7240 0.7029 0.6345 0.7437
0.0082 1 4.3088 - - - - - - -
0.8230 100 1.9026 - - - - - - -
1.6502 200 0.9336 0.8024 0.6703 0.6109 0.7695 0.7914 0.7594 0.8136
2.4774 300 0.161 - - - - - - -
3.3045 400 0.1398 0.8039 0.6717 0.6092 0.7697 0.8012 0.7696 0.8187

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 4.1.0
  • Transformers: 4.51.2
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

GISTEmbedLoss

@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for pj-mathematician/JobGTE-multilingual-base-v2

Finetuned
(66)
this model

Collection including pj-mathematician/JobGTE-multilingual-base-v2

Evaluation results