TalentCLEF-2025
Collection
Job to Job and Job to Skill matching sentence transformer models
•
9 items
•
Updated
Top performing model on TalentCLEF 2025 Task B. Use it for job title <-> skill set matching
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pj-mathematician/JobSkillBGE-large-en-v1.5")
# Run inference
sentences = [
'For roles such as import/export manager, graduate export manager, senior export manager, and other related positions in meat and meat products, the key skills include a strong understanding of international trade regulations, meat product knowledge, customs compliance, and excellent negotiation and communication skills to manage global supply chains effectively. Additionally, proficiency in relevant trade software and languages can be highly beneficial.',
'Job roles such as Performance Analyst, Quality Assurance Engineer, and Test Manager require skills in conducting performance measurement and organizing or managing conversion testing to ensure software and systems meet performance standards and function correctly in real-world scenarios.',
'Job roles that require skills such as managing staff, coordinating employees, and performing HR activities include Human Resources Managers, Team Leaders, Supervisors, and Department Heads, all of whom are responsible for overseeing personnel, implementing HR policies, and ensuring efficient team operations.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
full_en
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.7303 |
cosine_accuracy@20 | 0.9934 |
cosine_accuracy@50 | 0.9967 |
cosine_accuracy@100 | 1.0 |
cosine_accuracy@150 | 1.0 |
cosine_accuracy@200 | 1.0 |
cosine_precision@1 | 0.7303 |
cosine_precision@20 | 0.4998 |
cosine_precision@50 | 0.3918 |
cosine_precision@100 | 0.3112 |
cosine_precision@150 | 0.2652 |
cosine_precision@200 | 0.2322 |
cosine_recall@1 | 0.0102 |
cosine_recall@20 | 0.1337 |
cosine_recall@50 | 0.2541 |
cosine_recall@100 | 0.3948 |
cosine_recall@150 | 0.4963 |
cosine_recall@200 | 0.5721 |
cosine_ndcg@1 | 0.7303 |
cosine_ndcg@20 | 0.5385 |
cosine_ndcg@50 | 0.4499 |
cosine_ndcg@100 | 0.4428 |
cosine_ndcg@150 | 0.4895 |
cosine_ndcg@200 | 0.5346 |
cosine_mrr@1 | 0.7303 |
cosine_mrr@20 | 0.8342 |
cosine_mrr@50 | 0.8343 |
cosine_mrr@100 | 0.8344 |
cosine_mrr@150 | 0.8344 |
cosine_mrr@200 | 0.8344 |
cosine_map@1 | 0.7303 |
cosine_map@20 | 0.3435 |
cosine_map@50 | 0.2378 |
cosine_map@100 | 0.2116 |
cosine_map@150 | 0.229 |
cosine_map@200 | 0.2478 |
cosine_map@500 | 0.2982 |
anchor
and positive
anchor | positive | |
---|---|---|
type | string | string |
details |
|
|
anchor | positive |
---|---|
A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation. |
Job roles that require promoting health and safety include occupational health and safety specialists, safety managers, and public health educators, all of whom work to ensure safe and healthy environments in workplaces and communities. |
A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation. |
Job roles that require organizing rehearsals include directors, choreographers, and conductors in theater, dance, and music ensembles, who must efficiently plan and schedule practice sessions to prepare performers for a successful final performance. |
A technical director or any of its synonyms requires a strong blend of technical expertise and leadership skills, including the ability to oversee technical operations, manage teams, and ensure the successful execution of technical projects while maintaining operational efficiency and innovation. |
Job roles such as Health and Safety Managers, Environmental Health Officers, and Risk Management Specialists often require the skill of negotiating health and safety issues with third parties to ensure compliance and protection standards are met across different organizations and sites. |
CachedGISTEmbedLoss
with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01, 'mini_batch_size': 32, 'margin_strategy': 'absolute', 'margin': 0.0}
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 128gradient_accumulation_steps
: 2num_train_epochs
: 5warmup_ratio
: 0.05log_on_each_node
: Falsefp16
: Truedataloader_num_workers
: 4ddp_find_unused_parameters
: Truebatch_sampler
: no_duplicatesoverwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Falselogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Trueddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
: auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalEpoch | Step | Training Loss | full_en_cosine_ndcg@200 |
---|---|---|---|
-1 | -1 | - | 0.4784 |
0.0011 | 1 | 9.119 | - |
0.1116 | 100 | 4.1469 | - |
0.2232 | 200 | 2.5294 | 0.5362 |
0.3348 | 300 | 2.3611 | - |
0.4464 | 400 | 2.192 | 0.5318 |
0.5580 | 500 | 2.0338 | - |
0.6696 | 600 | 1.9009 | 0.5383 |
0.7812 | 700 | 1.8404 | - |
0.8929 | 800 | 1.7692 | 0.5352 |
1.0045 | 900 | 1.6921 | - |
1.1161 | 1000 | 1.3861 | 0.5368 |
1.2277 | 1100 | 1.3863 | - |
1.3393 | 1200 | 1.3546 | 0.5259 |
1.4509 | 1300 | 1.373 | - |
1.5625 | 1400 | 1.3364 | 0.5303 |
1.6741 | 1500 | 1.2876 | - |
1.7857 | 1600 | 1.3094 | 0.5323 |
1.8973 | 1700 | 1.2784 | - |
2.0089 | 1800 | 1.2204 | 0.5330 |
2.1205 | 1900 | 0.9617 | - |
2.2321 | 2000 | 1.0004 | 0.5277 |
2.3438 | 2100 | 0.9694 | - |
2.4554 | 2200 | 0.9843 | 0.5356 |
2.5670 | 2300 | 0.9743 | - |
2.6786 | 2400 | 0.9252 | 0.5320 |
2.7902 | 2500 | 0.9272 | - |
2.9018 | 2600 | 0.9279 | 0.5333 |
3.0134 | 2700 | 0.857 | - |
3.125 | 2800 | 0.7313 | 0.5300 |
3.2366 | 2900 | 0.7103 | - |
3.3482 | 3000 | 0.7187 | 0.5319 |
3.4598 | 3100 | 0.7067 | - |
3.5714 | 3200 | 0.7157 | 0.5369 |
3.6830 | 3300 | 0.7113 | - |
3.7946 | 3400 | 0.7013 | 0.5341 |
3.9062 | 3500 | 0.6903 | - |
4.0179 | 3600 | 0.6462 | 0.5335 |
4.1295 | 3700 | 0.5162 | - |
4.2411 | 3800 | 0.524 | 0.5352 |
4.3527 | 3900 | 0.5303 | - |
4.4643 | 4000 | 0.5269 | 0.5341 |
4.5759 | 4100 | 0.4824 | - |
4.6875 | 4200 | 0.5222 | 0.5342 |
4.7991 | 4300 | 0.5104 | - |
4.9107 | 4400 | 0.5002 | 0.5346 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
BAAI/bge-large-en-v1.5