Deepfake Classification 022025
Collection
based on recent dataset
β’
5 items
β’
Updated
β’
8
Deepfake-Detection-Exp-02-21 is a minimalist, high-quality dataset trained on a ViT-based model for image classification, distinguishing between deepfake and real images. The model is based on Google's google/vit-base-patch16-224-in21k
.
Mapping of IDs to Labels: {0: 'Deepfake', 1: 'Real'}
Mapping of Labels to IDs: {'Deepfake': 0, 'Real': 1}
Classification report:
precision recall f1-score support
Deepfake 0.9962 0.9806 0.9883 1600
Real 0.9809 0.9962 0.9885 1600
accuracy 0.9884 3200
macro avg 0.9886 0.9884 0.9884 3200
weighted avg 0.9886 0.9884 0.9884 3200
from transformers import pipeline
# Load the model
pipe = pipeline('image-classification', model="prithivMLmods/Deepfake-Detection-Exp-02-21", device=0)
# Predict on an image
result = pipe("path_to_image.jpg")
print(result)
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch
# Load the model and processor
model = ViTForImageClassification.from_pretrained("prithivMLmods/Deepfake-Detection-Exp-02-21")
processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deepfake-Detection-Exp-02-21")
# Load and preprocess the image
image = Image.open("path_to_image.jpg").convert("RGB")
inputs = processor(images=image, return_tensors="pt")
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
# Map class index to label
label = model.config.id2label[predicted_class]
print(f"Predicted Label: {label}")
vit-base-patch16-224-in21k
, it is optimized for 224x224 image resolution, which may limit its effectiveness on high-resolution images.