Face-Confidence-SigLIP2(Experimental)
Face-Confidence-SigLIP2 is a vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for binary image classification. It is trained to distinguish between images of confident faces and unconfident faces using the SiglipForImageClassification architecture.
SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features https://arxiv.org/pdf/2502.14786
Classification report:
precision recall f1-score support
confident 0.8468 0.8179 0.8321 4872
unconfident 0.8691 0.8909 0.8799 6611
accuracy 0.8600 11483
macro avg 0.8580 0.8544 0.8560 11483
weighted avg 0.8596 0.8600 0.8596 11483
Label Space: 2 Classes
The model classifies each image into one of the following categories:
Class 0: "confident"
Class 1: "unconfident"
Install Dependencies
pip install -q transformers torch pillow gradio
Image Scale (Optimal): 256 ร 256
Inference Code
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Face-Confidence-SigLIP2" # Replace with your model path if different
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Label mapping
id2label = {
"0": "confident",
"1": "unconfident"
}
def classify_face_confidence(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=classify_face_confidence,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Face Confidence Classification"),
title="Face-Confidence-SigLIP2",
description="Upload an image to detect if a face looks confident or unconfident."
)
if __name__ == "__main__":
iface.launch()
Demo Inference(Image)
Intended Use
Face-Confidence-SigLIP2 can be used for:
- Behavioral Analysis โ Detect confidence levels in facial expressions.
- Education & Training โ Assess learner engagement or self-confidence.
- HR & Recruitment โ Analyze non-verbal cues during interviews.
- Dataset Curation โ Separate confident vs unconfident facial images for training.
- Downloads last month
- 7
Model tree for prithivMLmods/Face-Confidence-SigLIP2
Base model
google/siglip2-base-patch16-224