FastThink-0.5B-Tiny-GGUF
FastThink-0.5B-Tiny is a reasoning-focused model based on Qwen2.5. They have released a range of base language models and instruction-tuned language models, spanning from 0.5 billion to 72 billion parameters.
Model Files
File | Size | Description |
---|---|---|
README.md | 31 Bytes | Project documentation |
config.json | 31 Bytes | Model configuration |
.gitattributes | 2.39 kB | Git attributes configuration |
FastThink-0.5B-Tiny.BF16.gguf | 994 MB | BFloat16 quantized model |
FastThink-0.5B-Tiny.F16.gguf | 994 MB | Float16 quantized model |
FastThink-0.5B-Tiny.F32.gguf | 1.98 GB | Float32 full precision model |
FastThink-0.5B-Tiny.Q2_K.gguf | 339 MB | 2-bit K-quantized model |
FastThink-0.5B-Tiny.Q3_K_L.gguf | 369 MB | 3-bit K-quantized model (Large) |
FastThink-0.5B-Tiny.Q3_K_M.gguf | 355 MB | 3-bit K-quantized model (Medium) |
FastThink-0.5B-Tiny.Q3_K_S.gguf | 338 MB | 3-bit K-quantized model (Small) |
FastThink-0.5B-Tiny.Q4_K_M.gguf | 398 MB | 4-bit K-quantized model (Medium) |
FastThink-0.5B-Tiny.Q4_K_S.gguf | 385 MB | 4-bit K-quantized model (Small) |
FastThink-0.5B-Tiny.Q5_K_M.gguf | 420 MB | 5-bit K-quantized model (Medium) |
FastThink-0.5B-Tiny.Q5_K_S.gguf | 413 MB | 5-bit K-quantized model (Small) |
FastThink-0.5B-Tiny.Q6_K.gguf | 506 MB | 6-bit K-quantized model |
FastThink-0.5B-Tiny.Q8_0.gguf | 531 MB | 8-bit quantized model |
Quants Usage
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
- Downloads last month
- 205
Hardware compatibility
Log In
to view the estimation
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
32-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for prithivMLmods/FastThink-0.5B-Tiny-GGUF
Base model
Qwen/Qwen2.5-0.5B
Finetuned
Qwen/Qwen2.5-0.5B-Instruct
Quantized
prithivMLmods/FastThink-0.5B-Tiny