FastThink-0.5B-Tiny-GGUF

FastThink-0.5B-Tiny is a reasoning-focused model based on Qwen2.5. They have released a range of base language models and instruction-tuned language models, spanning from 0.5 billion to 72 billion parameters.

Model Files

File Size Description
README.md 31 Bytes Project documentation
config.json 31 Bytes Model configuration
.gitattributes 2.39 kB Git attributes configuration
FastThink-0.5B-Tiny.BF16.gguf 994 MB BFloat16 quantized model
FastThink-0.5B-Tiny.F16.gguf 994 MB Float16 quantized model
FastThink-0.5B-Tiny.F32.gguf 1.98 GB Float32 full precision model
FastThink-0.5B-Tiny.Q2_K.gguf 339 MB 2-bit K-quantized model
FastThink-0.5B-Tiny.Q3_K_L.gguf 369 MB 3-bit K-quantized model (Large)
FastThink-0.5B-Tiny.Q3_K_M.gguf 355 MB 3-bit K-quantized model (Medium)
FastThink-0.5B-Tiny.Q3_K_S.gguf 338 MB 3-bit K-quantized model (Small)
FastThink-0.5B-Tiny.Q4_K_M.gguf 398 MB 4-bit K-quantized model (Medium)
FastThink-0.5B-Tiny.Q4_K_S.gguf 385 MB 4-bit K-quantized model (Small)
FastThink-0.5B-Tiny.Q5_K_M.gguf 420 MB 5-bit K-quantized model (Medium)
FastThink-0.5B-Tiny.Q5_K_S.gguf 413 MB 5-bit K-quantized model (Small)
FastThink-0.5B-Tiny.Q6_K.gguf 506 MB 6-bit K-quantized model
FastThink-0.5B-Tiny.Q8_0.gguf 531 MB 8-bit quantized model

Quants Usage

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

Downloads last month
205
GGUF
Model size
494M params
Architecture
qwen2
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

32-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for prithivMLmods/FastThink-0.5B-Tiny-GGUF

Base model

Qwen/Qwen2.5-0.5B
Quantized
(4)
this model