Formula-Text-Detection
Formula-Text-Detection is a vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for binary image classification. It is built using the SiglipForImageClassification architecture to distinguish between mathematical formulas and natural text in document or image regions.
Note: This model works best with plain text or formulas using the same font style
Classification Report:
precision recall f1-score support
formula 0.9983 1.0000 0.9991 6375
text 1.0000 0.9980 0.9990 5457
accuracy 0.9991 11832
macro avg 0.9991 0.9990 0.9991 11832
weighted avg 0.9991 0.9991 0.9991 11832
Label Space: 2 Classes
The model classifies each input image into one of the following categories:
Class 0: "formula"
Class 1: "text"
Install Dependencies
pip install -q transformers torch pillow gradio
Inference Code
import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "prithivMLmods/Formula-Text-Detection" # Replace with your model path if different
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)
# Label mapping
id2label = {
"0": "formula",
"1": "text"
}
def classify_formula_or_text(image):
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
prediction = {
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
}
return prediction
# Gradio Interface
iface = gr.Interface(
fn=classify_formula_or_text,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(num_top_classes=2, label="Formula or Text"),
title="Formula-Text-Detection",
description="Upload an image region to classify whether it contains a mathematical formula or natural text."
)
if __name__ == "__main__":
iface.launch()
Demo Inference
Text
Formula
Intended Use
Formula-Text-Detection can be used in:
- OCR Preprocessing โ Improve document OCR accuracy by separating formulas from text.
- Scientific Document Analysis โ Automatically detect mathematical content.
- Educational Platforms โ Classify and annotate scanned materials.
- Layout Understanding โ Help AI systems interpret mixed-content documents.
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for prithivMLmods/Formula-Text-Detection
Base model
google/siglip2-base-patch16-224