Geo.png

GeoGuessr-55

GeoGuessr-55 is a visual geolocation classification model that predicts the country from a single image. Based on the SigLIP2 architecture, this model can classify images into one of 55 countries using visual features such as landscapes, signs, vegetation, and architecture. It is useful for location-based games, geographic AI research, and image-based country inference.

Classification Report:
                precision    recall  f1-score   support

     Argentina     0.5292    0.5083    0.5185       482
     Australia     0.7850    0.8146    0.7995      1192
       Austria     0.6199    0.4380    0.5133       242
    Bangladesh     0.4583    0.1486    0.2245        74
       Belgium     0.2500    0.0065    0.0127       153
       Bolivia     0.0000    0.0000    0.0000        81
      Botswana     0.5263    0.2000    0.2899       100
        Brazil     0.6562    0.8356    0.7351      1624
      Bulgaria     0.5091    0.3709    0.4291       151
      Cambodia     0.0000    0.0000    0.0000        82
        Canada     0.7464    0.7973    0.7710       967
         Chile     0.5000    0.1360    0.2138       228
      Colombia     0.3191    0.0857    0.1351       175
       Croatia     0.6667    0.0222    0.0430        90
       Czechia     0.5000    0.0335    0.0628       179
       Denmark     0.0000    0.0000    0.0000       138
       Finland     0.6609    0.8338    0.7373       734
        France     0.6129    0.7913    0.6908      2501
       Germany     0.7943    0.8627    0.8271       488
         Ghana     0.4706    0.1081    0.1758        74
        Greece     0.3684    0.0809    0.1327       173
       Hungary     0.5000    0.0342    0.0640       117
         India     0.8261    0.5089    0.6298       112
     Indonesia     0.6211    0.2935    0.3986       201
       Ireland     0.6316    0.0591    0.1081       203
        Israel     0.5427    0.5570    0.5498       228
         Italy     0.4092    0.2736    0.3279       552
         Japan     0.7996    0.9632    0.8738      2688
         Kenya     0.4359    0.1868    0.2615        91
        Latvia     0.0000    0.0000    0.0000        81
     Lithuania     0.0000    0.0000    0.0000        98
      Malaysia     0.5413    0.3986    0.4591       296
        Mexico     0.4721    0.4571    0.4645       630
   Netherlands     0.5101    0.3753    0.4324       405
   New Zealand     0.6910    0.5116    0.5879       389
       Nigeria     0.4000    0.3488    0.3727        86
        Norway     0.7384    0.7055    0.7216       472
          Peru     0.5000    0.3016    0.3762       189
   Philippines     0.5217    0.1569    0.2412       153
        Poland     0.5122    0.6275    0.5640       604
      Portugal     0.2000    0.0059    0.0115       169
       Romania     0.4167    0.3512    0.3812       242
        Russia     0.6232    0.7946    0.6985      1232
     Singapore     0.7339    0.9211    0.8169       494
      Slovakia     0.0000    0.0000    0.0000        75
  South Africa     0.7535    0.7717    0.7625       828
   South Korea     0.5478    0.5059    0.5260       170
         Spain     0.4589    0.5492    0.5000       752
        Sweden     0.5311    0.3701    0.4362       508
   Switzerland     1.0000    0.0165    0.0325       121
        Taiwan     0.6029    0.4293    0.5015       382
      Thailand     0.5309    0.7939    0.6363       660
        Turkey     0.4872    0.2032    0.2868       187
       Ukraine     0.0000    0.0000    0.0000        79
United Kingdom     0.6792    0.8746    0.7646      1738

      accuracy                         0.6485     25160
     macro avg     0.4944    0.3713    0.3836     25160
  weighted avg     0.6147    0.6485    0.6106     25160

Label Classes

The model classifies an image into one of the following 55 countries:

0: Argentina         1: Australia         2: Austria           3: Bangladesh  
4: Belgium           5: Bolivia           6: Botswana          7: Brazil  
8: Bulgaria          9: Cambodia         10: Canada           11: Chile  
12: Colombia        13: Croatia          14: Czechia          15: Denmark  
16: Finland         17: France           18: Germany          19: Ghana  
20: Greece          21: Hungary          22: India            23: Indonesia  
24: Ireland         25: Israel           26: Italy            27: Japan  
28: Kenya           29: Latvia           30: Lithuania        31: Malaysia  
32: Mexico          33: Netherlands      34: New Zealand      35: Nigeria  
36: Norway          37: Peru             38: Philippines      39: Poland  
40: Portugal        41: Romania          42: Russia           43: Singapore  
44: Slovakia        45: South Africa     46: South Korea      47: Spain  
48: Sweden          49: Switzerland      50: Taiwan           51: Thailand  
52: Turkey          53: Ukraine          54: United Kingdom

Installation

pip install transformers torch pillow gradio

Example Inference Code

import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch

# Load model and processor
model_name = "prithivMLmods/GeoGuessr-55"
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)

# ID to label mapping
id2label = {
    "0": "Argentina", "1": "Australia", "2": "Austria", "3": "Bangladesh", "4": "Belgium",
    "5": "Bolivia", "6": "Botswana", "7": "Brazil", "8": "Bulgaria", "9": "Cambodia",
    "10": "Canada", "11": "Chile", "12": "Colombia", "13": "Croatia", "14": "Czechia",
    "15": "Denmark", "16": "Finland", "17": "France", "18": "Germany", "19": "Ghana",
    "20": "Greece", "21": "Hungary", "22": "India", "23": "Indonesia", "24": "Ireland",
    "25": "Israel", "26": "Italy", "27": "Japan", "28": "Kenya", "29": "Latvia",
    "30": "Lithuania", "31": "Malaysia", "32": "Mexico", "33": "Netherlands",
    "34": "New Zealand", "35": "Nigeria", "36": "Norway", "37": "Peru", "38": "Philippines",
    "39": "Poland", "40": "Portugal", "41": "Romania", "42": "Russia", "43": "Singapore",
    "44": "Slovakia", "45": "South Africa", "46": "South Korea", "47": "Spain", "48": "Sweden",
    "49": "Switzerland", "50": "Taiwan", "51": "Thailand", "52": "Turkey", "53": "Ukraine",
    "54": "United Kingdom"
}

def classify_country(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()

    return {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}

# Launch Gradio demo
iface = gr.Interface(
    fn=classify_country,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=5, label="Top Predicted Countries"),
    title="GeoGuessr-55",
    description="Upload an image to predict which country it's from. The model uses SigLIP2 to classify among 55 countries."
)

if __name__ == "__main__":
    iface.launch()

Applications

  • GeoGuessr-style games and challenges
  • Geographical tagging of unlabeled datasets
  • Tourism photo origin prediction
  • Education and training for human geographers or ML enthusiasts
Downloads last month
0
Safetensors
Model size
92.9M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prithivMLmods/GeoGuessr-55

Finetuned
(68)
this model

Dataset used to train prithivMLmods/GeoGuessr-55

Collection including prithivMLmods/GeoGuessr-55