Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,27 @@
|
|
1 |
---
|
2 |
datasets:
|
3 |
- marcelomoreno26/geoguessr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
```py
|
7 |
Classification Report:
|
8 |
precision recall f1-score support
|
@@ -66,4 +85,99 @@ United Kingdom 0.6792 0.8746 0.7646 1738
|
|
66 |
accuracy 0.6485 25160
|
67 |
macro avg 0.4944 0.3713 0.3836 25160
|
68 |
weighted avg 0.6147 0.6485 0.6106 25160
|
69 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
datasets:
|
3 |
- marcelomoreno26/geoguessr
|
4 |
+
license: apache-2.0
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model:
|
8 |
+
- google/siglip2-base-patch16-224
|
9 |
+
pipeline_tag: image-classification
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- GeoGuessr
|
13 |
+
- '55'
|
14 |
+
- Loaction
|
15 |
+
- RSI
|
16 |
+
- Remote Sensing Instruments
|
17 |
---
|
18 |
|
19 |
+

|
20 |
+
|
21 |
+
# **GeoGuessr-55**
|
22 |
+
|
23 |
+
> **GeoGuessr-55** is a visual geolocation classification model that predicts the **country** from a single image. Based on the `SigLIP2` architecture, this model can classify images into one of **55 countries** using visual features such as landscapes, signs, vegetation, and architecture. It is useful for location-based games, geographic AI research, and image-based country inference.
|
24 |
+
|
25 |
```py
|
26 |
Classification Report:
|
27 |
precision recall f1-score support
|
|
|
85 |
accuracy 0.6485 25160
|
86 |
macro avg 0.4944 0.3713 0.3836 25160
|
87 |
weighted avg 0.6147 0.6485 0.6106 25160
|
88 |
+
```
|
89 |
+
|
90 |
+
---
|
91 |
+
|
92 |
+
## **Label Classes**
|
93 |
+
|
94 |
+
The model classifies an image into one of the following 55 countries:
|
95 |
+
|
96 |
+
```
|
97 |
+
0: Argentina 1: Australia 2: Austria 3: Bangladesh
|
98 |
+
4: Belgium 5: Bolivia 6: Botswana 7: Brazil
|
99 |
+
8: Bulgaria 9: Cambodia 10: Canada 11: Chile
|
100 |
+
12: Colombia 13: Croatia 14: Czechia 15: Denmark
|
101 |
+
16: Finland 17: France 18: Germany 19: Ghana
|
102 |
+
20: Greece 21: Hungary 22: India 23: Indonesia
|
103 |
+
24: Ireland 25: Israel 26: Italy 27: Japan
|
104 |
+
28: Kenya 29: Latvia 30: Lithuania 31: Malaysia
|
105 |
+
32: Mexico 33: Netherlands 34: New Zealand 35: Nigeria
|
106 |
+
36: Norway 37: Peru 38: Philippines 39: Poland
|
107 |
+
40: Portugal 41: Romania 42: Russia 43: Singapore
|
108 |
+
44: Slovakia 45: South Africa 46: South Korea 47: Spain
|
109 |
+
48: Sweden 49: Switzerland 50: Taiwan 51: Thailand
|
110 |
+
52: Turkey 53: Ukraine 54: United Kingdom
|
111 |
+
```
|
112 |
+
|
113 |
+
---
|
114 |
+
|
115 |
+
## **Installation**
|
116 |
+
|
117 |
+
```bash
|
118 |
+
pip install transformers torch pillow gradio
|
119 |
+
```
|
120 |
+
|
121 |
+
---
|
122 |
+
|
123 |
+
## **Example Inference Code**
|
124 |
+
|
125 |
+
```python
|
126 |
+
import gradio as gr
|
127 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
128 |
+
from PIL import Image
|
129 |
+
import torch
|
130 |
+
|
131 |
+
# Load model and processor
|
132 |
+
model_name = "prithivMLmods/GeoGuessr-55"
|
133 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
134 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
135 |
+
|
136 |
+
# ID to label mapping
|
137 |
+
id2label = {
|
138 |
+
"0": "Argentina", "1": "Australia", "2": "Austria", "3": "Bangladesh", "4": "Belgium",
|
139 |
+
"5": "Bolivia", "6": "Botswana", "7": "Brazil", "8": "Bulgaria", "9": "Cambodia",
|
140 |
+
"10": "Canada", "11": "Chile", "12": "Colombia", "13": "Croatia", "14": "Czechia",
|
141 |
+
"15": "Denmark", "16": "Finland", "17": "France", "18": "Germany", "19": "Ghana",
|
142 |
+
"20": "Greece", "21": "Hungary", "22": "India", "23": "Indonesia", "24": "Ireland",
|
143 |
+
"25": "Israel", "26": "Italy", "27": "Japan", "28": "Kenya", "29": "Latvia",
|
144 |
+
"30": "Lithuania", "31": "Malaysia", "32": "Mexico", "33": "Netherlands",
|
145 |
+
"34": "New Zealand", "35": "Nigeria", "36": "Norway", "37": "Peru", "38": "Philippines",
|
146 |
+
"39": "Poland", "40": "Portugal", "41": "Romania", "42": "Russia", "43": "Singapore",
|
147 |
+
"44": "Slovakia", "45": "South Africa", "46": "South Korea", "47": "Spain", "48": "Sweden",
|
148 |
+
"49": "Switzerland", "50": "Taiwan", "51": "Thailand", "52": "Turkey", "53": "Ukraine",
|
149 |
+
"54": "United Kingdom"
|
150 |
+
}
|
151 |
+
|
152 |
+
def classify_country(image):
|
153 |
+
image = Image.fromarray(image).convert("RGB")
|
154 |
+
inputs = processor(images=image, return_tensors="pt")
|
155 |
+
|
156 |
+
with torch.no_grad():
|
157 |
+
outputs = model(**inputs)
|
158 |
+
logits = outputs.logits
|
159 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
160 |
+
|
161 |
+
return {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
162 |
+
|
163 |
+
# Launch Gradio demo
|
164 |
+
iface = gr.Interface(
|
165 |
+
fn=classify_country,
|
166 |
+
inputs=gr.Image(type="numpy"),
|
167 |
+
outputs=gr.Label(num_top_classes=5, label="Top Predicted Countries"),
|
168 |
+
title="GeoGuessr-55",
|
169 |
+
description="Upload an image to predict which country it's from. The model uses SigLIP2 to classify among 55 countries."
|
170 |
+
)
|
171 |
+
|
172 |
+
if __name__ == "__main__":
|
173 |
+
iface.launch()
|
174 |
+
```
|
175 |
+
|
176 |
+
---
|
177 |
+
|
178 |
+
## **Applications**
|
179 |
+
|
180 |
+
* **GeoGuessr-style games and challenges**
|
181 |
+
* **Geographical tagging of unlabeled datasets**
|
182 |
+
* **Tourism photo origin prediction**
|
183 |
+
* **Education and training for human geographers or ML enthusiasts**
|