Lambda-Equulei-1.5B-xLingual

Lambda-Equulei-1.5B-xLingual is a multilingual conversational model fine-tuned from Qwen2-1.5B, specifically designed for cross-lingual chat and experimental conversations across 30+ languages. It brings advanced multilingual understanding and natural dialogue capabilities in a compact size, ideal for international communication tools, language learning platforms, and global conversational assistants.

Model Files

Filename Size Format Description
Lambda-Equulei-1.5B-xLingual.BF16.gguf 3.56 GB BF16 Brain Float 16-bit quantization
Lambda-Equulei-1.5B-xLingual.F16.gguf 3.56 GB F16 Half precision (16-bit) floating point
Lambda-Equulei-1.5B-xLingual.F32.gguf 7.11 GB F32 Full precision (32-bit) floating point
Lambda-Equulei-1.5B-xLingual.Q2_K.gguf 753 MB Q2_K 2-bit quantization with K-quant
Lambda-Equulei-1.5B-xLingual.Q3_K_L.gguf 980 MB Q3_K_L 3-bit quantization (Large) with K-quant
Lambda-Equulei-1.5B-xLingual.Q3_K_M.gguf 924 MB Q3_K_M 3-bit quantization (Medium) with K-quant
Lambda-Equulei-1.5B-xLingual.Q3_K_S.gguf 861 MB Q3_K_S 3-bit quantization (Small) with K-quant
Lambda-Equulei-1.5B-xLingual.Q4_K_M.gguf 1.12 GB Q4_K_M 4-bit quantization (Medium) with K-quant
Lambda-Equulei-1.5B-xLingual.Q4_K_S.gguf 1.07 GB Q4_K_S 4-bit quantization (Small) with K-quant
Lambda-Equulei-1.5B-xLingual.Q5_K_M.gguf 1.29 GB Q5_K_M 5-bit quantization (Medium) with K-quant
Lambda-Equulei-1.5B-xLingual.Q5_K_S.gguf 1.26 GB Q5_K_S 5-bit quantization (Small) with K-quant
Lambda-Equulei-1.5B-xLingual.Q6_K.gguf 1.46 GB Q6_K 6-bit quantization with K-quant
Lambda-Equulei-1.5B-xLingual.Q8_0.gguf 1.89 GB Q8_0 8-bit quantization

Recommended Usage

  • Q4_K_M or Q5_K_M: Best balance of quality and performance for most users
  • Q6_K or Q8_0: Higher quality, moderate file sizes
  • Q2_K or Q3_K_S: Fastest inference, lower quality (good for resource-constrained environments)
  • F16 or BF16: High quality, requires more VRAM
  • F32: Highest quality, requires significant VRAM

Quants Usage

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

Downloads last month
236
GGUF
Model size
1.78B params
Architecture
qwen2
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

32-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prithivMLmods/Lambda-Equulei-1.5B-xLingual-GGUF

Base model

Qwen/Qwen2.5-1.5B
Quantized
(3)
this model

Collection including prithivMLmods/Lambda-Equulei-1.5B-xLingual-GGUF