Blitzar Experimentals
Collection
coder
•
4 items
•
Updated
•
2
Lambda-Equulei-1.5B-xLingual is a multilingual conversational model fine-tuned from Qwen2-1.5B, specifically designed for cross-lingual chat and experimental conversations across 30+ languages. It brings advanced multilingual understanding and natural dialogue capabilities in a compact size, ideal for international communication tools, language learning platforms, and global conversational assistants.
Model Files
Filename | Size | Format | Description |
---|---|---|---|
Lambda-Equulei-1.5B-xLingual.BF16.gguf | 3.56 GB | BF16 | Brain Float 16-bit quantization |
Lambda-Equulei-1.5B-xLingual.F16.gguf | 3.56 GB | F16 | Half precision (16-bit) floating point |
Lambda-Equulei-1.5B-xLingual.F32.gguf | 7.11 GB | F32 | Full precision (32-bit) floating point |
Lambda-Equulei-1.5B-xLingual.Q2_K.gguf | 753 MB | Q2_K | 2-bit quantization with K-quant |
Lambda-Equulei-1.5B-xLingual.Q3_K_L.gguf | 980 MB | Q3_K_L | 3-bit quantization (Large) with K-quant |
Lambda-Equulei-1.5B-xLingual.Q3_K_M.gguf | 924 MB | Q3_K_M | 3-bit quantization (Medium) with K-quant |
Lambda-Equulei-1.5B-xLingual.Q3_K_S.gguf | 861 MB | Q3_K_S | 3-bit quantization (Small) with K-quant |
Lambda-Equulei-1.5B-xLingual.Q4_K_M.gguf | 1.12 GB | Q4_K_M | 4-bit quantization (Medium) with K-quant |
Lambda-Equulei-1.5B-xLingual.Q4_K_S.gguf | 1.07 GB | Q4_K_S | 4-bit quantization (Small) with K-quant |
Lambda-Equulei-1.5B-xLingual.Q5_K_M.gguf | 1.29 GB | Q5_K_M | 5-bit quantization (Medium) with K-quant |
Lambda-Equulei-1.5B-xLingual.Q5_K_S.gguf | 1.26 GB | Q5_K_S | 5-bit quantization (Small) with K-quant |
Lambda-Equulei-1.5B-xLingual.Q6_K.gguf | 1.46 GB | Q6_K | 6-bit quantization with K-quant |
Lambda-Equulei-1.5B-xLingual.Q8_0.gguf | 1.89 GB | Q8_0 | 8-bit quantization |
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
32-bit
Base model
Qwen/Qwen2.5-1.5B