1.png

OpenSDI-Flux.1-SigLIP2

OpenSDI-Flux.1-SigLIP2 is a vision-language encoder model fine-tuned from google/siglip2-base-patch16-224 for binary image classification. It is trained to detect whether an image is a real photograph or generated using the Flux.1 generative model, based on the SiglipForImageClassification architecture.

SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features https://arxiv.org/pdf/2502.14786

OpenSDI: Spotting Diffusion-Generated Images in the Open World https://arxiv.org/pdf/2503.19653, OpenSDI Flux.1 SigLIP2 works best with crisp and high-quality images. Noisy images are not recommended for validation.

If the task is based on image content moderation or AI-generated image vs. real image classification, it is recommended to use this model.

Classification Report:
                  precision    recall  f1-score   support

      Real_Image     0.9108    0.9238    0.9172     10000
Flux.1_Generated     0.9227    0.9095    0.9160     10000

        accuracy                         0.9166     20000
       macro avg     0.9167    0.9166    0.9166     20000
    weighted avg     0.9167    0.9166    0.9166     20000

download.png


Label Space: 2 Classes

The model classifies an image as either:

Class 0: Real_Image
Class 1: Flux.1_Generated

Install Dependencies

pip install -q transformers torch pillow gradio hf_xet

Inference Code

import gradio as gr
from transformers import AutoImageProcessor, SiglipForImageClassification
from PIL import Image
import torch

# Load model and processor
model_name = "prithivMLmods/OpenSDI-Flux.1-SigLIP2"  # Update if needed
model = SiglipForImageClassification.from_pretrained(model_name)
processor = AutoImageProcessor.from_pretrained(model_name)

# Label mapping
id2label = {
    "0": "Real_Image",
    "1": "Flux.1_Generated"
}

def classify_image(image):
    image = Image.fromarray(image).convert("RGB")
    inputs = processor(images=image, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()

    prediction = {
        id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
    }

    return prediction

# Gradio Interface
iface = gr.Interface(
    fn=classify_image,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Label(num_top_classes=2, label="Flux.1 Image Detection"),
    title="OpenSDI-Flux.1-SigLIP2",
    description="Upload an image to determine whether it is a real photograph or generated by Flux.1."
)

if __name__ == "__main__":
    iface.launch()

Demo Inference

Flux.1 Generated

Image 1 Image 2
Mak Ethius

Real Image

Image 1 Image 2
Image1 Image2

Intended Use

OpenSDI-Flux.1-SigLIP2 is designed for tasks such as:

  • Generative Model Evaluation – Distinguish Flux.1-generated images from real photos for benchmarking and validation.
  • Dataset Auditing – Detect synthetic images in real-world datasets to maintain integrity.
  • Misinformation Detection – Identify AI-generated visuals in online or news content.
  • Media Authentication – Verify whether visual content originates from human-captured or model-generated sources.
Downloads last month
14
Safetensors
Model size
92.9M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 1 Ask for provider support

Model tree for prithivMLmods/OpenSDI-Flux.1-SigLIP2

Finetuned
(90)
this model

Datasets used to train prithivMLmods/OpenSDI-Flux.1-SigLIP2

Collection including prithivMLmods/OpenSDI-Flux.1-SigLIP2