jupyter-agent-qwen3-4b-AIO-GGUF

Jupyter-agent-qwen3-4b-instruct and jupyter-agent-qwen3-4b-thinking are specialized 4B-parameter models built on Qwen3-4B for agentic reasoning and data science tasks in Jupyter notebooks, supporting both general instruction following and step-by-step, notebook-native logical analysis. The instruct variant excels at delivering fast, efficient responses without generating detailed reasoning traces, while the thinking variant provides comprehensive intermediate computations and analysis, including tool calling and dataset-grounded reasoning on realistic Kaggle workflows, making both models state-of-the-art for code execution, data exploration, and practical problem solving in Python and multi-turn notebook environments.

Model Name Download Link
jupyter-agent-qwen3-4b-instruct-GGUF Link
jupyter-agent-qwen3-4b-thinking-GGUF Link

Model Files

jupyter-agent-qwen3-4b-instruct-GGUF

File Name Quant Type File Size
jupyter-agent-qwen3-4b-instruct.BF16.gguf BF16 8.05 GB
jupyter-agent-qwen3-4b-instruct.F16.gguf F16 8.05 GB
jupyter-agent-qwen3-4b-instruct.F32.gguf F32 16.1 GB
jupyter-agent-qwen3-4b-instruct.Q2_K.gguf Q2_K 1.67 GB
jupyter-agent-qwen3-4b-instruct.Q3_K_L.gguf Q3_K_L 2.24 GB
jupyter-agent-qwen3-4b-instruct.Q3_K_M.gguf Q3_K_M 2.08 GB
jupyter-agent-qwen3-4b-instruct.Q3_K_S.gguf Q3_K_S 1.89 GB
jupyter-agent-qwen3-4b-instruct.Q4_K_M.gguf Q4_K_M 2.5 GB
jupyter-agent-qwen3-4b-instruct.Q4_K_S.gguf Q4_K_S 2.38 GB
jupyter-agent-qwen3-4b-instruct.Q5_K_M.gguf Q5_K_M 2.89 GB
jupyter-agent-qwen3-4b-instruct.Q5_K_S.gguf Q5_K_S 2.82 GB
jupyter-agent-qwen3-4b-instruct.Q6_K.gguf Q6_K 3.31 GB
jupyter-agent-qwen3-4b-instruct.Q8_0.gguf Q8_0 4.28 GB

jupyter-agent-qwen3-4b-thinking-GGUF

File Name Quant Type File Size
jupyter-agent-qwen3-4b-thinking.BF16.gguf BF16 8.05 GB
jupyter-agent-qwen3-4b-thinking.F16.gguf F16 8.05 GB
jupyter-agent-qwen3-4b-thinking.F32.gguf F32 16.1 GB
jupyter-agent-qwen3-4b-thinking.Q2_K.gguf Q2_K 1.67 GB
jupyter-agent-qwen3-4b-thinking.Q3_K_L.gguf Q3_K_L 2.24 GB
jupyter-agent-qwen3-4b-thinking.Q3_K_M.gguf Q3_K_M 2.08 GB
jupyter-agent-qwen3-4b-thinking.Q3_K_S.gguf Q3_K_S 1.89 GB
jupyter-agent-qwen3-4b-thinking.Q4_K_M.gguf Q4_K_M 2.5 GB
jupyter-agent-qwen3-4b-thinking.Q4_K_S.gguf Q4_K_S 2.38 GB
jupyter-agent-qwen3-4b-thinking.Q5_K_M.gguf Q5_K_M 2.89 GB
jupyter-agent-qwen3-4b-thinking.Q5_K_S.gguf Q5_K_S 2.82 GB
jupyter-agent-qwen3-4b-thinking.Q6_K.gguf Q6_K 3.31 GB
jupyter-agent-qwen3-4b-thinking.Q8_0.gguf Q8_0 4.28 GB

Quants Usage

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

Downloads last month
385
GGUF
Model size
4B params
Architecture
qwen3
Hardware compatibility
Log In to view the estimation

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

16-bit

32-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for prithivMLmods/jupyter-agent-qwen3-4b-AIO-GGUF

Dataset used to train prithivMLmods/jupyter-agent-qwen3-4b-AIO-GGUF