prithivMLmods commited on
Commit
bc5c283
·
verified ·
1 Parent(s): 0bc29e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -1
README.md CHANGED
@@ -19,4 +19,56 @@ datasets:
19
 
20
  # **jupyter-agent-qwen3-4b-AIO-GGUF**
21
 
22
- > [Jupyter-agent-qwen3-4b-instruct and jupyter-agent-qwen3-4b-thinking](https://huggingface.co/collections/jupyter-agent/jupyter-agent-68c18c9139c6ba3310ed6067) are specialized 4B-parameter models built on Qwen3-4B for agentic reasoning and data science tasks in Jupyter notebooks, supporting both general instruction following and step-by-step, notebook-native logical analysis. The instruct variant excels at delivering fast, efficient responses without generating detailed reasoning traces, while the thinking variant provides comprehensive intermediate computations and analysis, including tool calling and dataset-grounded reasoning on realistic Kaggle workflows, making both models state-of-the-art for code execution, data exploration, and practical problem solving in Python and multi-turn notebook environments.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  # **jupyter-agent-qwen3-4b-AIO-GGUF**
21
 
22
+ > [Jupyter-agent-qwen3-4b-instruct and jupyter-agent-qwen3-4b-thinking](https://huggingface.co/collections/jupyter-agent/jupyter-agent-68c18c9139c6ba3310ed6067) are specialized 4B-parameter models built on Qwen3-4B for agentic reasoning and data science tasks in Jupyter notebooks, supporting both general instruction following and step-by-step, notebook-native logical analysis. The instruct variant excels at delivering fast, efficient responses without generating detailed reasoning traces, while the thinking variant provides comprehensive intermediate computations and analysis, including tool calling and dataset-grounded reasoning on realistic Kaggle workflows, making both models state-of-the-art for code execution, data exploration, and practical problem solving in Python and multi-turn notebook environments.
23
+
24
+ | Model Name | Download Link |
25
+ |------------------------------------------|-----------------------------------------------------------------------------------------------|
26
+ | **jupyter-agent-qwen3-4b-instruct-GGUF** | [Link](https://huggingface.co/prithivMLmods/jupyter-agent-qwen3-4b-AIO-GGUF/tree/main) |
27
+ | **jupyter-agent-qwen3-4b-thinking-GGUF** | [Link](https://huggingface.co/prithivMLmods/jupyter-agent-qwen3-4b-AIO-GGUF/tree/main/jupyter-agent-qwen3-4b-thinking) |
28
+
29
+ ## Model Files
30
+
31
+ ### jupyter-agent-qwen3-4b-instruct-GGUF
32
+
33
+ | File Name | Quant Type | File Size |
34
+ | - | - | - |
35
+ | jupyter-agent-qwen3-4b-instruct.BF16.gguf | BF16 | 8.05 GB |
36
+ | jupyter-agent-qwen3-4b-instruct.F16.gguf | F16 | 8.05 GB |
37
+ | jupyter-agent-qwen3-4b-instruct.F32.gguf | F32 | 16.1 GB |
38
+ | jupyter-agent-qwen3-4b-instruct.Q2_K.gguf | Q2_K | 1.67 GB |
39
+ | jupyter-agent-qwen3-4b-instruct.Q3_K_L.gguf | Q3_K_L | 2.24 GB |
40
+ | jupyter-agent-qwen3-4b-instruct.Q3_K_M.gguf | Q3_K_M | 2.08 GB |
41
+ | jupyter-agent-qwen3-4b-instruct.Q3_K_S.gguf | Q3_K_S | 1.89 GB |
42
+ | jupyter-agent-qwen3-4b-instruct.Q4_K_M.gguf | Q4_K_M | 2.5 GB |
43
+ | jupyter-agent-qwen3-4b-instruct.Q4_K_S.gguf | Q4_K_S | 2.38 GB |
44
+ | jupyter-agent-qwen3-4b-instruct.Q5_K_M.gguf | Q5_K_M | 2.89 GB |
45
+ | jupyter-agent-qwen3-4b-instruct.Q5_K_S.gguf | Q5_K_S | 2.82 GB |
46
+ | jupyter-agent-qwen3-4b-instruct.Q6_K.gguf | Q6_K | 3.31 GB |
47
+ | jupyter-agent-qwen3-4b-instruct.Q8_0.gguf | Q8_0 | 4.28 GB |
48
+
49
+ ### jupyter-agent-qwen3-4b-thinking-GGUF
50
+
51
+ | File Name | Quant Type | File Size |
52
+ | - | - | - |
53
+ | jupyter-agent-qwen3-4b-thinking.BF16.gguf | BF16 | 8.05 GB |
54
+ | jupyter-agent-qwen3-4b-thinking.F16.gguf | F16 | 8.05 GB |
55
+ | jupyter-agent-qwen3-4b-thinking.F32.gguf | F32 | 16.1 GB |
56
+ | jupyter-agent-qwen3-4b-thinking.Q2_K.gguf | Q2_K | 1.67 GB |
57
+ | jupyter-agent-qwen3-4b-thinking.Q3_K_L.gguf | Q3_K_L | 2.24 GB |
58
+ | jupyter-agent-qwen3-4b-thinking.Q3_K_M.gguf | Q3_K_M | 2.08 GB |
59
+ | jupyter-agent-qwen3-4b-thinking.Q3_K_S.gguf | Q3_K_S | 1.89 GB |
60
+ | jupyter-agent-qwen3-4b-thinking.Q4_K_M.gguf | Q4_K_M | 2.5 GB |
61
+ | jupyter-agent-qwen3-4b-thinking.Q4_K_S.gguf | Q4_K_S | 2.38 GB |
62
+ | jupyter-agent-qwen3-4b-thinking.Q5_K_M.gguf | Q5_K_M | 2.89 GB |
63
+ | jupyter-agent-qwen3-4b-thinking.Q5_K_S.gguf | Q5_K_S | 2.82 GB |
64
+ | jupyter-agent-qwen3-4b-thinking.Q6_K.gguf | Q6_K | 3.31 GB |
65
+ | jupyter-agent-qwen3-4b-thinking.Q8_0.gguf | Q8_0 | 4.28 GB |
66
+
67
+ ## Quants Usage
68
+
69
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
70
+
71
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
72
+ types (lower is better):
73
+
74
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)