mcp-tool-use-quality-ranger-0.6b-GGUF
mcp-tool-use-quality-ranger-0.6b is a sequence classification model fine-tuned from Qwen3-0.6B-Base, designed to evaluate the quality of function calls within conversational AI systems using the Model Context Protocol (MCP) framework. Supporting a context length of 32,768 tokens, it classifies function calls as VALID_CALL, TOOL_ERROR, PARAM_NAME_ERROR, or PARAM_VALUE_ERROR by verifying tool selection, parameter names, and parameter values, and delivers robust, fast assessments for dialog-based tool usage, parameter errors, and value correctness. Optimized for lightweight deployment, mcp-tool-use-quality-ranger-0.6b achieves high benchmark accuracy, making it ideal for developers and researchers who require precise tool call evaluations in AI workflows.
Model Files
File Name | Quant Type | File Size |
---|---|---|
mcp-tool-use-quality-ranger-0.6b.BF16.gguf | BF16 | 1.2 GB |
mcp-tool-use-quality-ranger-0.6b.F16.gguf | F16 | 1.2 GB |
mcp-tool-use-quality-ranger-0.6b.F32.gguf | F32 | 2.39 GB |
mcp-tool-use-quality-ranger-0.6b.Q2_K.gguf | Q2_K | 296 MB |
mcp-tool-use-quality-ranger-0.6b.Q3_K_L.gguf | Q3_K_L | 368 MB |
mcp-tool-use-quality-ranger-0.6b.Q3_K_M.gguf | Q3_K_M | 347 MB |
mcp-tool-use-quality-ranger-0.6b.Q3_K_S.gguf | Q3_K_S | 323 MB |
mcp-tool-use-quality-ranger-0.6b.Q4_0.gguf | Q4_0 | 382 MB |
mcp-tool-use-quality-ranger-0.6b.Q4_1.gguf | Q4_1 | 409 MB |
mcp-tool-use-quality-ranger-0.6b.Q4_K.gguf | Q4_K | 397 MB |
mcp-tool-use-quality-ranger-0.6b.Q4_K_M.gguf | Q4_K_M | 397 MB |
mcp-tool-use-quality-ranger-0.6b.Q4_K_S.gguf | Q4_K_S | 383 MB |
mcp-tool-use-quality-ranger-0.6b.Q5_0.gguf | Q5_0 | 437 MB |
mcp-tool-use-quality-ranger-0.6b.Q5_1.gguf | Q5_1 | 464 MB |
mcp-tool-use-quality-ranger-0.6b.Q5_K.gguf | Q5_K | 444 MB |
mcp-tool-use-quality-ranger-0.6b.Q5_K_M.gguf | Q5_K_M | 444 MB |
mcp-tool-use-quality-ranger-0.6b.Q5_K_S.gguf | Q5_K_S | 437 MB |
mcp-tool-use-quality-ranger-0.6b.Q6_K.gguf | Q6_K | 495 MB |
mcp-tool-use-quality-ranger-0.6b.Q8_0.gguf | Q8_0 | 639 MB |
Quants Usage
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
- Downloads last month
- 324
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
16-bit
32-bit
Model tree for prithivMLmods/mcp-tool-use-quality-ranger-0.6b-GGUF
Base model
Qwen/Qwen3-0.6B-Base