priyankloco's picture
update model card README.md
f9c5d00
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-finetuned_swinv2tiny-autotags-256
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.965482233502538

swinv2-tiny-patch4-window8-256-finetuned_swinv2tiny-autotags-256

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1115
  • Accuracy: 0.9655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6169 0.99 61 1.1018 0.6701
0.7747 1.99 122 0.4571 0.8670
0.6088 2.99 183 0.3002 0.9198
0.3908 3.99 244 0.2334 0.9299
0.399 4.99 305 0.2138 0.9320
0.2969 5.99 366 0.1650 0.9492
0.2743 6.99 427 0.1514 0.9533
0.2947 7.99 488 0.1428 0.9513
0.2304 8.99 549 0.1541 0.9523
0.1957 9.99 610 0.1256 0.9604
0.1645 10.99 671 0.1138 0.9645
0.2317 11.99 732 0.1140 0.9655
0.1001 12.99 793 0.1068 0.9706
0.1564 13.99 854 0.1119 0.9675
0.1386 14.99 915 0.1115 0.9655

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.10.2+cu113
  • Datasets 2.10.1
  • Tokenizers 0.13.2