|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- project-droid/DroidCollection |
|
base_model: |
|
- answerdotai/ModernBERT-large |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# DroidDetect-Large |
|
|
|
This is a text classification model based on `answerdotai/ModernBERT-large`, fine-tuned to distinguish between **human-written**, and **AI-generated** code. |
|
|
|
The model was trained on the `DroidCollection` dataset. It's designed as a **binary classifier** to address the core task of AI code detection. |
|
|
|
A key feature of this model is its training objective, which combines standard **Cross-Entropy Loss** with a **Batch-Hard Triplet Loss**. This contrastive loss component encourages the model to learn more discriminative embeddings by pushing representations of human vs. machine code further apart in the vector space. |
|
|
|
*** |
|
|
|
## Model Details |
|
|
|
* **Base Model:** `answerdotai/ModernBERT-large` |
|
* **Loss Function:** `Total Loss = CrossEntropyLoss + 0.1 * TripletLoss` |
|
* **Dataset:** Filtered training set of the [DroidCollection](https://huggingface.co/datasets/project-droid/DroidCollection). |
|
|
|
#### Label Mapping |
|
|
|
The model predicts one of 2 classes. The mapping from ID to label is as follows: |
|
|
|
```json |
|
{ |
|
"0": "HUMAN_GENERATED", |
|
"1": "MACHINE_GENERATED", |
|
} |
|
``` |
|
|
|
## Model Code |
|
|
|
The following code can be used for reproducibility: |
|
|
|
```python |
|
TEXT_EMBEDDING_DIM = 1024 |
|
|
|
|
|
class TLModel(nn.Module): |
|
def __init__(self, text_encoder, projection_dim=128, num_classes=NUM_CLASSES, class_weights=None): |
|
super().__init__() |
|
self.text_encoder = text_encoder |
|
self.num_classes = num_classes |
|
text_output_dim = TEXT_EMBEDDING_DIM |
|
self.additional_loss = losses.BatchHardSoftMarginTripletLoss(self.text_encoder) |
|
|
|
self.text_projection = nn.Linear(text_output_dim, projection_dim) |
|
self.classifier = nn.Linear(projection_dim, num_classes) |
|
self.class_weights = class_weights |
|
|
|
def forward(self, labels=None, input_ids=None, attention_mask=None): |
|
actual_labels = labels |
|
sentence_embeddings = self.text_encoder(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state |
|
sentence_embeddings = sentence_embeddings.mean(dim=1) |
|
projected_text = F.relu(self.text_projection(sentence_embeddings)) |
|
logits = self.classifier(projected_text) |
|
loss = None |
|
cross_entropy_loss = None |
|
contrastive_loss = None |
|
|
|
if actual_labels is not None: |
|
loss_fct_ce = nn.CrossEntropyLoss(weight=self.class_weights.to(logits.device) if self.class_weights is not None else None) |
|
cross_entropy_loss = loss_fct_ce(logits.view(-1, self.num_classes), actual_labels.view(-1)) |
|
contrastive_loss = self.additional_loss.batch_hard_triplet_loss(embeddings=projected_text, labels=actual_labels) |
|
lambda_contrast = 0.1 |
|
loss = cross_entropy_loss + lambda_contrast * contrastive_loss |
|
|
|
|
|
output = {"logits": logits, "fused_embedding": projected_text} |
|
if loss is not None: |
|
output["loss"] = loss |
|
if cross_entropy_loss is not None: |
|
output["cross_entropy_loss"] = cross_entropy_loss |
|
if contrastive_loss is not None: |
|
output["contrastive_loss"] = contrastive_loss |
|
|
|
return output |
|
``` |