πŸ“˜ psresearch/RE_scholarly_text_deberta_v3_large

A DeBERTa-v3-large model fine-tuned for Relation Extraction (RE) on scholarly documents that mention software. This model identifies semantic relationships (e.g., Developer_of, Version_of) between software-related entities in academic text.


πŸ§ͺ Training Data

This model was trained on the following dataset:

wanted to load and run this model check this - submission_recreate.ipynb The dataset contains annotated relationships between named entities found in scholarly papers related to software engineering.


πŸ“Š Metrics

on testset

Relation Precision Recall F1-Score Support
Developer_of 0.2344 0.7500 0.3571 20
Citation_of 0.5321 0.7968 0.6381 187
Version_of 0.3901 0.7396 0.5108 96
PlugIn_of 0.1013 0.6154 0.1739 13
URL_of 0.4701 0.7857 0.5882 70
License_of 0.0000 0.0000 0.0000 0
AlternativeName_of 0.6522 0.8824 0.7500 17
Release_of 0.5263 1.0000 0.6897 10
Abbreviation_of 0.5000 0.5000 0.5000 12
Extension_of 0.0000 0.0000 0.0000 6
Specification_of 0.0000 0.0000 0.0000 0
Micro Avg 0.4240 0.7633 0.5452 431
Macro Avg 0.3785 0.6744 0.4675 431
Weighted Avg 0.4599 0.7633 0.5675 431

πŸ“ˆ Model Comparison

Task Model / Setup Precision Recall F1
RE DeBERTa-V3-Large 0.1025 0.4117 0.1543
RE Modern BERT-Large 0.0878 0.4228 0.1379
RE DeBERTa-V3-Large (Augmented Data) 0.3785 0.6744 0.4675
RE Modern BERT-Large (Augmented Data) 0.3473 0.6702 0.4384

🏷️ Label Mapping

{
  "Developer_of": 0,
  "URL_of": 1,
  "Version_of": 2,
  "Citation_of": 3,
  "PlugIn_of": 4,
  "Extension_of": 5,
  "Specification_of": 6,
  "no_relation": 7,
  "Release_of": 8,
  "Abbreviation_of": 9,
  "License_of": 10,
  "AlternativeName_of": 11
}
Downloads last month
35
Safetensors
Model size
434M params
Tensor type
F32
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train psresearch/RE_scholarly_text_deberta_v3_large

Evaluation results