pszemraj's picture
Update README.md
7ef04d7
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - pszemraj/scientific_lay_summarisation-elife-norm
metrics:
  - rouge
model-index:
  - name: long-t5-tglobal-xl-scientific_lay_summarisation-elife-norm-16384-summ-v1
    results:
      - task:
          name: Summarization
          type: summarization
        dataset:
          name: pszemraj/scientific_lay_summarisation-elife-norm
          type: pszemraj/scientific_lay_summarisation-elife-norm
          split: validation
        metrics:
          - name: Rouge1
            type: rouge
            value: 47.1446
pipeline_tag: summarization
inference: false

long-t5-tglobal-xl-sci-simplify-elife

This model is a fine-tuned version of google/long-t5-tglobal-xl on the pszemraj/scientific_lay_summarisation-elife-norm dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6666
  • Rouge1: 47.1446
  • Rouge2: 14.2158
  • Rougel: 23.3524
  • Rougelsum: 44.6063
  • Gen Len: 431.22

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

the pszemraj/scientific_lay_summarisation-elife-norm dataset, input 16384 tokens then truncate, output 1024 tokens then truncate.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 6963
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.02
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.7959 1.0 543 1.6770 44.4187 12.6752 22.4669 41.944 456.33
1.7578 2.0 1086 1.6666 47.1446 14.2158 23.3524 44.6063 431.22