pszemraj's picture
update model card README.md
a3c68db
|
raw
history blame
2.99 kB
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - matthews_correlation
model-index:
  - name: xtremedistil-l12-h384-uncased-CoLA
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: cola
          split: validation
          args: cola
        metrics:
          - name: Matthews Correlation
            type: matthews_correlation
            value: 0.5076423377649488

xtremedistil-l12-h384-uncased-CoLA

This model is a fine-tuned version of microsoft/xtremedistil-l12-h384-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8556
  • Matthews Correlation: 0.5076

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 16
  • seed: 5559
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 16.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Matthews Correlation
0.4822 1.0 67 0.5893 0.2621
0.4669 2.0 134 0.5811 0.3722
0.3077 3.0 201 0.6150 0.4383
0.2594 4.0 268 0.4974 0.5396
0.21 5.0 335 0.5594 0.5182
0.1526 6.0 402 0.5715 0.5150
0.1775 7.0 469 0.6637 0.5020
0.1681 8.0 536 0.6958 0.5131
0.124 9.0 603 0.7057 0.5154
0.1111 10.0 670 0.8173 0.5074
0.1332 11.0 737 0.8253 0.5260
0.0673 12.0 804 0.8086 0.5180
0.0512 13.0 871 0.8409 0.5128
0.0457 14.0 938 0.8760 0.4947
0.04 15.0 1005 0.8522 0.5103
0.0485 16.0 1072 0.8556 0.5076

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.1