import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torch.utils
from torch.utils.data import Dataset, DataLoader

import os
import argparse

# from ..utils import progress_bar
import time
import random
import numpy as np
import pickle
import hashlib
import io
import torch.utils.data
from tqdm import tqdm
from transformers import AutoModelForCausalLM, DataCollatorForLanguageModeling, AutoTokenizer, LlamaForCausalLM
from datasets import load_dataset
from functools import partial
import copy
import wandb

def tokenize(dp, tokenizer):
    inputs = tokenizer(
            dp['text'], 
            # return_tensors="pt", 
            max_length=128, 
            truncation=True, 
            padding=False
        )["input_ids"]
    
    inputs=inputs[:128]

    return {'input_ids': inputs, 'labels': copy.deepcopy(inputs)}

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
    parser.add_argument('--lr', default=2e-5, type=float, help='learning rate')
    parser.add_argument('--batch-size', default=64, type=int, help='batch size')
    parser.add_argument('--model-ckpt', default=None, type=str, help='model checkpoint')
    parser.add_argument('--save', default=None, type=str, help='model checkpoint save dir')
    parser.add_argument('--epoch', default=1, type=int, help='number of epochs')
    parser.add_argument('--save_interval', default=5, type=int, help='model checkpoint saving interval')
    parser.add_argument('--pseudo_random', type=int, default=1234, help='pseudo random seed for all')
    args = parser.parse_args()

    if args.pseudo_random is not None:
        os.environ['PYTHONHASHSEED'] = '0'
        os.environ['TF_DETERMINISTIC_OPS'] = '1'
        random.seed(args.pseudo_random + 1)
        np.random.seed(args.pseudo_random + 1)
        torch.manual_seed(args.pseudo_random)
        torch.cuda.manual_seed(args.pseudo_random)
        torch.cuda.manual_seed_all(args.pseudo_random)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
        print(f'set seed to {args.pseudo_random}')

    wandb.init(
        project='InfoScore',
        name='finetune-smol',
        config=args
    )

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    best_acc = 0  # best test accuracy
    batch_size = args.batch_size
    # Data
    print('==> Preparing data..')
    raw_texts = load_dataset("tatsu-lab/alpaca", split='train')
    ds = raw_texts.map(lambda x: {'text': x['instruction']+x['input']+x['output']})

    model=AutoModelForCausalLM.from_pretrained('HuggingFaceTB/SmolLM-135M', attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16).to(device)
    tokenizer=AutoTokenizer.from_pretrained('HuggingFaceTB/SmolLM-135M')
    tokenizer.pad_token = tokenizer.eos_token
    ds = ds.map(lambda x: tokenize(x, tokenizer)).remove_columns('instruction').remove_columns('input').remove_columns('output').remove_columns('text').remove_columns('labels')
    ds=ds.map(lambda x, idx: {'index': idx}, with_indices=True)
    print(ds[0])
    train_data = torch.utils.data.Subset(ds, list(range(40000)))
    test_data = torch.utils.data.Subset(ds, list(range(40000, 52002)))

    # texts = torch.utils.data.Subset(raw_texts, list(range(40000, 52002)))
    train_loader = DataLoader(
        train_data,
        shuffle=False,
        collate_fn=DataCollatorForLanguageModeling(tokenizer, mlm=False, pad_to_multiple_of=8, return_tensors="pt"),
        num_workers=8,
        batch_size=batch_size)
    
    test_loader = DataLoader(
        test_data,
        shuffle=False,
        collate_fn=DataCollatorForLanguageModeling(tokenizer, mlm=False, pad_to_multiple_of=8, return_tensors="pt"),
        num_workers=8,
        batch_size=batch_size)

    optimizer = optim.SGD(model.parameters(), lr=args.lr,
                        momentum=0.9, weight_decay=5e-4)
    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=200)

    # Training

    def train(epoch):
        print('\nEpoch: %d' % epoch)
        st_time = time.time()
        model.train()
        train_loss = 0
        # print(next(iter(trainloader)))
        for batch_idx, batch in enumerate(tqdm(train_loader)):
            optimizer.zero_grad()

            batch = batch.to(device)
            input_ids=batch['input_ids']
            labels=batch['labels']
            attn_mask=batch['attention_mask']

            res_model = model(input_ids, labels=labels, attention_mask=attn_mask)
            loss = res_model.loss
            loss.backward()
            optimizer.step()
            train_loss += loss.item()

        duration=time.time()-st_time
        print('Epoch: %d | Train Loss: %.3f | Time: %ds' % (epoch, train_loss/(batch_idx+1), duration), flush=True)
        model.push_to_hub('pxyyy/SmolLM-135M-epoch1', use_temp_dir=True)
        tokenizer.push_to_hub('pxyyy/SmolLM-135M-epoch1', use_temp_dir=True)

        return train_loss/(batch_idx+1)
    
    def test(epoch):
        model.eval()
        test_loss = 0
        with torch.no_grad():
            for batch_idx, batch in enumerate(tqdm(test_loader)):
                batch = batch.to(device)
                input_ids=batch['input_ids']
                labels=batch['labels']
                attn_mask=batch['attention_mask']
                outputs = model(input_ids, labels=labels, attention_mask=attn_mask)
                loss = outputs.loss
                test_loss += loss.item()

        print('Epoch: %d | Test Loss: %.3f ' % (epoch, test_loss/(batch_idx+1)), flush=True)
        
        # Save checkpoint.
        if epoch % args.save_interval == 0 and args.save is not None:
            print('Saving..')
            if not os.path.isdir(args.save):
                os.mkdir(args.save)
            torch.save(model.state_dict(), f'{args.save}/ckpt-{epoch}.pth')
        return test_loss/(batch_idx+1)

    for epoch in range(1, args.epoch+1):
        train_loss = train(epoch)
        test_loss = test(epoch)
        scheduler.step()
        wandb.log({'train/train_loss': train_loss, 'eval/test_loss': test_loss})

python3 resnet-cifar/finetune_smol.py

Model Card for Model ID

Model Details

Model Description

This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
27
Safetensors
Model size
135M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for pxyyy/SmolLM-135M-epoch1

Quantizations
1 model