|
""" Optimizer Factory w/ Custom Weight Decay |
|
Hacked together by / Copyright 2020 Ross Wightman |
|
""" |
|
import torch |
|
from torch import optim as optim |
|
|
|
from .adafactor import Adafactor |
|
from .adahessian import Adahessian |
|
from .adamp import AdamP |
|
from .lookahead import Lookahead |
|
from .nadam import Nadam |
|
from .novograd import NovoGrad |
|
from .nvnovograd import NvNovoGrad |
|
from .radam import RAdam |
|
from .rmsprop_tf import RMSpropTF |
|
from .sgdp import SGDP |
|
|
|
try: |
|
from apex.optimizers import FusedNovoGrad, FusedAdam, FusedLAMB, FusedSGD |
|
|
|
has_apex = True |
|
except ImportError: |
|
has_apex = False |
|
|
|
|
|
def add_weight_decay(model, weight_decay=1e-5, skip_list=()): |
|
decay = [] |
|
no_decay = [] |
|
for name, param in model.named_parameters(): |
|
if not param.requires_grad: |
|
continue |
|
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: |
|
no_decay.append(param) |
|
else: |
|
decay.append(param) |
|
return [ |
|
{"params": no_decay, "weight_decay": 0.0}, |
|
{"params": decay, "weight_decay": weight_decay}, |
|
] |
|
|
|
|
|
def create_optimizer(args, model, filter_bias_and_bn=True): |
|
opt_lower = args.opt.lower() |
|
weight_decay = args.weight_decay |
|
if weight_decay and filter_bias_and_bn: |
|
skip = {} |
|
if hasattr(model, "no_weight_decay"): |
|
skip = model.no_weight_decay() |
|
parameters = add_weight_decay(model, weight_decay, skip) |
|
weight_decay = 0.0 |
|
else: |
|
parameters = filter( |
|
lambda p: p.requires_grad, model.parameters() |
|
) |
|
|
|
if "fused" in opt_lower: |
|
assert ( |
|
has_apex and torch.cuda.is_available() |
|
), "APEX and CUDA required for fused optimizers" |
|
|
|
opt_args = dict(lr=args.lr, weight_decay=weight_decay) |
|
if hasattr(args, "opt_eps") and args.opt_eps is not None: |
|
opt_args["eps"] = args.opt_eps |
|
if hasattr(args, "opt_betas") and args.opt_betas is not None: |
|
opt_args["betas"] = args.opt_betas |
|
if hasattr(args, "opt_args") and args.opt_args is not None: |
|
opt_args.update(args.opt_args) |
|
|
|
opt_split = opt_lower.split("_") |
|
opt_lower = opt_split[-1] |
|
if opt_lower == "sgd" or opt_lower == "nesterov": |
|
opt_args.pop("eps", None) |
|
optimizer = optim.SGD( |
|
parameters, momentum=args.momentum, nesterov=True, **opt_args |
|
) |
|
elif opt_lower == "momentum": |
|
opt_args.pop("eps", None) |
|
optimizer = optim.SGD( |
|
parameters, momentum=args.momentum, nesterov=False, **opt_args |
|
) |
|
elif opt_lower == "adam": |
|
optimizer = optim.Adam(parameters, **opt_args) |
|
elif opt_lower == "adamw": |
|
optimizer = optim.AdamW(parameters, **opt_args) |
|
elif opt_lower == "nadam": |
|
optimizer = Nadam(parameters, **opt_args) |
|
elif opt_lower == "radam": |
|
optimizer = RAdam(parameters, **opt_args) |
|
elif opt_lower == "adamp": |
|
optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args) |
|
elif opt_lower == "sgdp": |
|
optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args) |
|
elif opt_lower == "adadelta": |
|
optimizer = optim.Adadelta(parameters, **opt_args) |
|
elif opt_lower == "adafactor": |
|
if not args.lr: |
|
opt_args["lr"] = None |
|
optimizer = Adafactor(parameters, **opt_args) |
|
elif opt_lower == "adahessian": |
|
optimizer = Adahessian(parameters, **opt_args) |
|
elif opt_lower == "rmsprop": |
|
optimizer = optim.RMSprop( |
|
parameters, alpha=0.9, momentum=args.momentum, **opt_args |
|
) |
|
elif opt_lower == "rmsproptf": |
|
optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args) |
|
elif opt_lower == "novograd": |
|
optimizer = NovoGrad(parameters, **opt_args) |
|
elif opt_lower == "nvnovograd": |
|
optimizer = NvNovoGrad(parameters, **opt_args) |
|
elif opt_lower == "fusedsgd": |
|
opt_args.pop("eps", None) |
|
optimizer = FusedSGD( |
|
parameters, momentum=args.momentum, nesterov=True, **opt_args |
|
) |
|
elif opt_lower == "fusedmomentum": |
|
opt_args.pop("eps", None) |
|
optimizer = FusedSGD( |
|
parameters, momentum=args.momentum, nesterov=False, **opt_args |
|
) |
|
elif opt_lower == "fusedadam": |
|
optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args) |
|
elif opt_lower == "fusedadamw": |
|
optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args) |
|
elif opt_lower == "fusedlamb": |
|
optimizer = FusedLAMB(parameters, **opt_args) |
|
elif opt_lower == "fusednovograd": |
|
opt_args.setdefault("betas", (0.95, 0.98)) |
|
optimizer = FusedNovoGrad(parameters, **opt_args) |
|
else: |
|
assert False and "Invalid optimizer" |
|
raise ValueError |
|
|
|
if len(opt_split) > 1: |
|
if opt_split[0] == "lookahead": |
|
optimizer = Lookahead(optimizer) |
|
|
|
return optimizer |
|
|