Built with Axolotl

See axolotl config

axolotl version: 0.5.0

base_model: Qwen/Qwen2.5-Math-7B

plugins:
  - axolotl.integrations.liger.LigerPlugin

liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

strict: false

chat_template: chatml
datasets:

  - path: arcee-ai/orcamath_evol_85k
    type: chat_template
    split: train
    field_messages: conversations
    message_field_role: from
    message_field_content: value

  - path: allenai/tulu-3-sft-personas-math
    type: chat_template
    split: train[:10%]
    field_messages: messages
    message_field_role: role
    message_field_content: content

  - path: allenai/tulu-3-sft-personas-algebra
    type: chat_template
    split: train
    field_messages: messages
    message_field_role: role
    message_field_content: content

dataset_prepared_path: ./axolotl-datasets/math-evol-prepared
val_set_size: 0.02
output_dir: ./axolotl-outputs/Arcee-7B-Mathy-7B

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

wandb_project: "Arcee-Mathy-7B"
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused #adamw_torch_fused # if you have OOM errors you can use adamw_8bit
lr_scheduler: linear
learning_rate: 5e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 20
evals_per_epoch: 1
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.0

special_tokens:
  pad_token: <|endoftext|>
  eos_token: <|im_end|>

axolotl-outputs/Arcee-7B-Mathy-7B

This model is a fine-tuned version of Qwen/Qwen2.5-Math-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8577

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.4101 0.0106 1 1.6490
0.2037 0.9987 94 1.6728
0.177 1.9960 188 1.7276
0.1332 2.9920 282 1.8577

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.3
Downloads last month
12
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for qnguyen3/mathy-7b-3e

Base model

Qwen/Qwen2.5-7B
Finetuned
(9)
this model