See axolotl config
axolotl version: 0.5.0
base_model: Qwen/Qwen2.5-Math-7B
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
strict: false
chat_template: chatml
datasets:
- path: arcee-ai/orcamath_evol_85k
type: chat_template
split: train
field_messages: conversations
message_field_role: from
message_field_content: value
- path: allenai/tulu-3-sft-personas-math
type: chat_template
split: train[:10%]
field_messages: messages
message_field_role: role
message_field_content: content
- path: allenai/tulu-3-sft-personas-algebra
type: chat_template
split: train
field_messages: messages
message_field_role: role
message_field_content: content
dataset_prepared_path: ./axolotl-datasets/math-evol-prepared
val_set_size: 0.02
output_dir: ./axolotl-outputs/Arcee-7B-Mathy-7B
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: "Arcee-Mathy-7B"
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused #adamw_torch_fused # if you have OOM errors you can use adamw_8bit
lr_scheduler: linear
learning_rate: 5e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 20
evals_per_epoch: 1
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
special_tokens:
pad_token: <|endoftext|>
eos_token: <|im_end|>
axolotl-outputs/Arcee-7B-Mathy-7B
This model is a fine-tuned version of Qwen/Qwen2.5-Math-7B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8577
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.4101 | 0.0106 | 1 | 1.6490 |
0.2037 | 0.9987 | 94 | 1.6728 |
0.177 | 1.9960 | 188 | 1.7276 |
0.1332 | 2.9920 | 282 | 1.8577 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.3
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.