Akarshan Biswas

qnixsynapse

AI & ML interests

NLP, models, quantization

Recent Activity

liked a Space 16 days ago
webml-community/attention-visualization
reacted to suayptalha's post with 👀 19 days ago
🚀 Introducing 𝐅𝐢𝐫𝐬𝐭 𝐇𝐮𝐠𝐠𝐢𝐧𝐠 𝐅𝐚𝐜𝐞 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐦𝐢𝐧𝐆𝐑𝐔 𝐌𝐨𝐝𝐞𝐥𝐬 from the paper 𝐖𝐞𝐫𝐞 𝐑𝐍𝐍𝐬 𝐀𝐥𝐥 𝐖𝐞 𝐍𝐞𝐞𝐝𝐞𝐝? 🖥 I have integrated 𝐧𝐞𝐱𝐭-𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐑𝐍𝐍𝐬, specifically minGRU, which offer faster performance compared to Transformer architectures, into HuggingFace. This allows users to leverage the lighter and more efficient minGRU models with the "𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫𝐬" 𝐥𝐢𝐛𝐫𝐚𝐫𝐲 for both usage and training. 💻 I integrated two main tasks: 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 and 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐂𝐚𝐮𝐬𝐚𝐥𝐋𝐌. 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧: You can use this class for 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 tasks. I also trained a Sentiment Analysis model with stanfordnlp/imdb dataset. 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐂𝐚𝐮𝐬𝐚𝐥𝐋𝐌: You can use this class for 𝐂𝐚𝐮𝐬𝐚𝐥 𝐋𝐚𝐧𝐠𝐮𝐚𝐠𝐞 𝐌𝐨𝐝𝐞𝐥 tasks such as GPT, Llama. I also trained an example model with roneneldan/TinyStories dataset. You can fine-tune and use it! 🔗 𝐋𝐢𝐧𝐤𝐬: Models: https://huggingface.co/collections/suayptalha/mingru-676fe8d90760d01b7955d7ab GitHub: https://github.com/suayptalha/minGRU-hf LinkedIn Post: https://www.linkedin.com/posts/suayp-talha-kocabay_mingru-a-suayptalha-collection-activity-7278755484172439552-wNY1 📰 𝐂𝐫𝐞𝐝𝐢𝐭𝐬: Paper Link: https://arxiv.org/abs/2410.01201 I am thankful to Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio and Hossein Hajimirsadeghi for their papers.
View all activity

Organizations

None yet

qnixsynapse's activity

New activity in google/gemma-2-9b-it 16 days ago

Tool calling support in Gemma 2

2
#50 opened about 1 month ago by
qnixsynapse
reacted to suayptalha's post with 👀 19 days ago
view post
Post
1855
🚀 Introducing 𝐅𝐢𝐫𝐬𝐭 𝐇𝐮𝐠𝐠𝐢𝐧𝐠 𝐅𝐚𝐜𝐞 𝐈𝐧𝐭𝐞𝐠𝐫𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐦𝐢𝐧𝐆𝐑𝐔 𝐌𝐨𝐝𝐞𝐥𝐬 from the paper 𝐖𝐞𝐫𝐞 𝐑𝐍𝐍𝐬 𝐀𝐥𝐥 𝐖𝐞 𝐍𝐞𝐞𝐝𝐞𝐝?

🖥 I have integrated 𝐧𝐞𝐱𝐭-𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝐑𝐍𝐍𝐬, specifically minGRU, which offer faster performance compared to Transformer architectures, into HuggingFace. This allows users to leverage the lighter and more efficient minGRU models with the "𝐭𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐞𝐫𝐬" 𝐥𝐢𝐛𝐫𝐚𝐫𝐲 for both usage and training.

💻 I integrated two main tasks: 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 and 𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐂𝐚𝐮𝐬𝐚𝐥𝐋𝐌.

𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧:
You can use this class for 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 𝐂𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 tasks. I also trained a Sentiment Analysis model with stanfordnlp/imdb dataset.

𝐌𝐢𝐧𝐆𝐑𝐔𝐅𝐨𝐫𝐂𝐚𝐮𝐬𝐚𝐥𝐋𝐌:
You can use this class for 𝐂𝐚𝐮𝐬𝐚𝐥 𝐋𝐚𝐧𝐠𝐮𝐚𝐠𝐞 𝐌𝐨𝐝𝐞𝐥 tasks such as GPT, Llama. I also trained an example model with roneneldan/TinyStories dataset. You can fine-tune and use it!

🔗 𝐋𝐢𝐧𝐤𝐬:
Models: suayptalha/mingru-676fe8d90760d01b7955d7ab
GitHub: https://github.com/suayptalha/minGRU-hf
LinkedIn Post: https://www.linkedin.com/posts/suayp-talha-kocabay_mingru-a-suayptalha-collection-activity-7278755484172439552-wNY1

📰 𝐂𝐫𝐞𝐝𝐢𝐭𝐬:
Paper Link: https://arxiv.org/abs/2410.01201

I am thankful to Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio and Hossein Hajimirsadeghi for their papers.
liked a Space about 2 months ago
replied to Xenova's post 5 months ago
view reply

Depends upon the GPU hardware tbh. Not everywhere you can get 90 tokens/sec. :)