ControlNet-Canny: Optimized for Mobile Deployment

Generating visual arts from text prompt and input guiding image

On-device, high-resolution image synthesis from text and image prompts. ControlNet guides Stable-diffusion with provided input image to generate accurate images from given input prompt.

This model is an implementation of ControlNet-Canny found here.

This repository provides scripts to run ControlNet-Canny on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_generation
  • Model Stats:
    • Input: Text prompt and input image as a reference
    • Conditioning Input: Canny-Edge
    • Text Encoder Number of parameters: 340M
    • UNet Number of parameters: 865M
    • VAE Decoder Number of parameters: 83M
    • ControlNet Number of parameters: 361M
    • Model size: 1.4GB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
text_encoder w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 5.37 ms 0 - 3 MB NPU Use Export Script
text_encoder w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 5.903 ms 0 - 10 MB NPU Use Export Script
text_encoder w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 5.395 ms 0 - 2 MB NPU Use Export Script
text_encoder w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 5.412 ms 0 - 2 MB NPU Use Export Script
text_encoder w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 5.903 ms 0 - 10 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 5.432 ms 0 - 3 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 5.743 ms 0 - 3 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 3.872 ms 0 - 18 MB NPU Use Export Script
text_encoder w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 4.067 ms 0 - 20 MB NPU Use Export Script
text_encoder w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 3.481 ms 0 - 14 MB NPU Use Export Script
text_encoder w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 3.255 ms 0 - 13 MB NPU Use Export Script
text_encoder w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 5.792 ms 1 - 1 MB NPU Use Export Script
text_encoder w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 5.958 ms 158 - 158 MB NPU Use Export Script
unet w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 110.879 ms 13 - 15 MB NPU Use Export Script
unet w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 107.956 ms 6 - 13 MB NPU Use Export Script
unet w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 116.595 ms 13 - 15 MB NPU Use Export Script
unet w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 115.724 ms 13 - 16 MB NPU Use Export Script
unet w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 107.956 ms 6 - 13 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 117.156 ms 13 - 16 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 116.818 ms 0 - 883 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 81.085 ms 13 - 31 MB NPU Use Export Script
unet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 84.025 ms 13 - 32 MB NPU Use Export Script
unet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 70.612 ms 13 - 27 MB NPU Use Export Script
unet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 70.807 ms 13 - 28 MB NPU Use Export Script
unet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 116.726 ms 13 - 13 MB NPU Use Export Script
unet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 117.502 ms 829 - 829 MB NPU Use Export Script
vae w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 268.758 ms 0 - 3 MB NPU Use Export Script
vae w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 248.983 ms 0 - 10 MB NPU Use Export Script
vae w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 272.989 ms 0 - 2 MB NPU Use Export Script
vae w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 284.628 ms 0 - 2 MB NPU Use Export Script
vae w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 248.983 ms 0 - 10 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 270.831 ms 0 - 3 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 273.364 ms 0 - 66 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 205.993 ms 0 - 18 MB NPU Use Export Script
vae w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 204.786 ms 3 - 22 MB NPU Use Export Script
vae w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 194.607 ms 0 - 14 MB NPU Use Export Script
vae w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 193.998 ms 3 - 17 MB NPU Use Export Script
vae w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 266.935 ms 0 - 0 MB NPU Use Export Script
vae w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 266.448 ms 63 - 63 MB NPU Use Export Script
controlnet w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_CONTEXT_BINARY 83.197 ms 2 - 4 MB NPU Use Export Script
controlnet w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_CONTEXT_BINARY 81.755 ms 2 - 11 MB NPU Use Export Script
controlnet w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_CONTEXT_BINARY 83.451 ms 2 - 5 MB NPU Use Export Script
controlnet w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_CONTEXT_BINARY 83.565 ms 2 - 4 MB NPU Use Export Script
controlnet w8a16 SA8775P ADP Qualcomm® SA8775P QNN_CONTEXT_BINARY 81.755 ms 2 - 11 MB NPU Use Export Script
controlnet w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_CONTEXT_BINARY 83.39 ms 2 - 5 MB NPU Use Export Script
controlnet w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile PRECOMPILED_QNN_ONNX 86.158 ms 0 - 384 MB NPU Use Export Script
controlnet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_CONTEXT_BINARY 58.723 ms 2 - 21 MB NPU Use Export Script
controlnet w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile PRECOMPILED_QNN_ONNX 59.623 ms 32 - 50 MB NPU Use Export Script
controlnet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_CONTEXT_BINARY 56.385 ms 2 - 16 MB NPU Use Export Script
controlnet w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile PRECOMPILED_QNN_ONNX 57.339 ms 31 - 45 MB NPU Use Export Script
controlnet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_CONTEXT_BINARY 85.054 ms 2 - 2 MB NPU Use Export Script
controlnet w8a16 Snapdragon X Elite CRD Snapdragon® X Elite PRECOMPILED_QNN_ONNX 80.108 ms 351 - 351 MB NPU Use Export Script

Installation

Install the package via pip:

pip install "qai-hub-models[controlnet-canny]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.controlnet_canny.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.controlnet_canny.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.controlnet_canny.export
Profiling Results
------------------------------------------------------------
text_encoder
Device                          : cs_8550 (ANDROID 12)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 5.4                                  
Estimated peak memory usage (MB): [0, 3]                               
Total # Ops                     : 438                                  
Compute Unit(s)                 : npu (438 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
unet
Device                          : cs_8550 (ANDROID 12)                  
Runtime                         : QNN_CONTEXT_BINARY                    
Estimated inference time (ms)   : 110.9                                 
Estimated peak memory usage (MB): [13, 15]                              
Total # Ops                     : 4055                                  
Compute Unit(s)                 : npu (4055 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
vae
Device                          : cs_8550 (ANDROID 12)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 268.8                                
Estimated peak memory usage (MB): [0, 3]                               
Total # Ops                     : 175                                  
Compute Unit(s)                 : npu (175 ops) gpu (0 ops) cpu (0 ops)

------------------------------------------------------------
controlnet
Device                          : cs_8550 (ANDROID 12)                 
Runtime                         : QNN_CONTEXT_BINARY                   
Estimated inference time (ms)   : 83.2                                 
Estimated peak memory usage (MB): [2, 4]                               
Total # Ops                     : 664                                  
Compute Unit(s)                 : npu (664 ops) gpu (0 ops) cpu (0 ops)

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on ControlNet-Canny's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of ControlNet-Canny can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support