EasyOCR: Optimized for Mobile Deployment
Ready-to-use OCR with 80+ supported languages and all popular writing scripts
EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts.
This model is an implementation of EasyOCR found here.
This repository provides scripts to run EasyOCR on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.image_to_text
- Model Stats:
- Model checkpoint: easyocr-small-stage1
- Input resolution: 384x384
- Number of parameters (EasyOCRDetector): 20.8M
- Model size (EasyOCRDetector): 79.2 MB
- Number of parameters (EasyOCRRecognizer): 3.84M
- Model size (EasyOCRRecognizer): 14.7 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
EasyOCRDetector | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 275.458 ms | 16 - 48 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 270.789 ms | 1 - 10 MB | NPU | Use Export Script |
EasyOCRDetector | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 70.736 ms | 16 - 80 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 76.73 ms | 5 - 48 MB | NPU | Use Export Script |
EasyOCRDetector | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 40.689 ms | 11 - 179 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 39.365 ms | 6 - 8 MB | NPU | Use Export Script |
EasyOCRDetector | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 71.795 ms | 16 - 48 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 69.237 ms | 1 - 11 MB | NPU | Use Export Script |
EasyOCRDetector | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 275.458 ms | 16 - 48 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 270.789 ms | 1 - 10 MB | NPU | Use Export Script |
EasyOCRDetector | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 41.443 ms | 10 - 177 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 39.315 ms | 6 - 9 MB | NPU | Use Export Script |
EasyOCRDetector | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 78.414 ms | 16 - 50 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 75.233 ms | 1 - 18 MB | NPU | Use Export Script |
EasyOCRDetector | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 40.471 ms | 10 - 177 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 39.08 ms | 6 - 9 MB | NPU | Use Export Script |
EasyOCRDetector | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 71.795 ms | 16 - 48 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 69.237 ms | 1 - 11 MB | NPU | Use Export Script |
EasyOCRDetector | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 42.007 ms | 10 - 175 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 39.622 ms | 8 - 25 MB | NPU | Use Export Script |
EasyOCRDetector | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 39.96 ms | 33 - 122 MB | NPU | EasyOCR.onnx |
EasyOCRDetector | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 29.987 ms | 15 - 71 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 28.481 ms | 6 - 41 MB | NPU | Use Export Script |
EasyOCRDetector | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 29.133 ms | 0 - 35 MB | NPU | EasyOCR.onnx |
EasyOCRDetector | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 29.206 ms | 15 - 50 MB | NPU | EasyOCR.tflite |
EasyOCRDetector | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 23.04 ms | 6 - 43 MB | NPU | Use Export Script |
EasyOCRDetector | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 23.198 ms | 43 - 81 MB | NPU | EasyOCR.onnx |
EasyOCRDetector | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 38.883 ms | 6 - 6 MB | NPU | Use Export Script |
EasyOCRDetector | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 40.509 ms | 72 - 72 MB | NPU | EasyOCR.onnx |
EasyOCRRecognizer | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 589.726 ms | 8 - 18 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 283.697 ms | 0 - 9 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 139.797 ms | 7 - 26 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 38.642 ms | 0 - 196 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 120.493 ms | 6 - 9 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 24.48 ms | 0 - 8 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 358.115 ms | 8 - 21 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 28.746 ms | 0 - 10 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 589.726 ms | 8 - 18 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 283.697 ms | 0 - 9 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 115.044 ms | 7 - 11 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 24.387 ms | 0 - 2 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 224.477 ms | 9 - 28 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 40.571 ms | 0 - 17 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 103.174 ms | 8 - 11 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 24.388 ms | 0 - 3 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 358.115 ms | 8 - 21 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 28.746 ms | 0 - 10 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 120.023 ms | 7 - 9 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 25.243 ms | 0 - 102 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 23.373 ms | 0 - 23 MB | NPU | EasyOCR.onnx |
EasyOCRRecognizer | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 101.055 ms | 9 - 28 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 18.61 ms | 0 - 496 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 16.01 ms | 0 - 25 MB | NPU | EasyOCR.onnx |
EasyOCRRecognizer | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 106.429 ms | 14 - 29 MB | CPU | EasyOCR.tflite |
EasyOCRRecognizer | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 16.009 ms | 0 - 500 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 17.335 ms | 0 - 17 MB | NPU | EasyOCR.onnx |
EasyOCRRecognizer | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 25.522 ms | 0 - 0 MB | NPU | Use Export Script |
EasyOCRRecognizer | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 18.95 ms | 0 - 0 MB | NPU | EasyOCR.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[easyocr]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.easyocr.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.easyocr.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.easyocr.export
Profiling Results
------------------------------------------------------------
EasyOCRDetector
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 275.5
Estimated peak memory usage (MB): [16, 48]
Total # Ops : 42
Compute Unit(s) : npu (42 ops) gpu (0 ops) cpu (0 ops)
------------------------------------------------------------
EasyOCRRecognizer
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 589.7
Estimated peak memory usage (MB): [8, 18]
Total # Ops : 136
Compute Unit(s) : npu (0 ops) gpu (0 ops) cpu (136 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.easyocr import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on EasyOCR's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of EasyOCR can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 272