library_name: pytorch
license: bsd-3-clause
pipeline_tag: object-detection
tags:
- real_time
- quantized
- android
Facial-Attribute-Detection-Quantized: Optimized for Mobile Deployment
Comprehensive facial analysis by extracting face features
Facial feature extraction and additional attributes including liveness, eyeclose, mask and glasses detection for face recognition.
This model is an implementation of Facial-Attribute-Detection-Quantized found here.
This repository provides scripts to run Facial-Attribute-Detection-Quantized on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Object detection
- Model Stats:
- Model checkpoint: multitask_FR_state_dict.pt
- Input resolution: 128x128
- Input channel number: 1
- Number of parameters: 11.6M
- Model size: 47.6MB
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Facial-Attribute-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.439 ms | 0 - 30 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.506 ms | 0 - 30 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.so |
Facial-Attribute-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.949 ms | 0 - 36 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.onnx |
Facial-Attribute-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.333 ms | 30 - 66 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.383 ms | 0 - 33 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.so |
Facial-Attribute-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.673 ms | 48 - 89 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.onnx |
Facial-Attribute-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.341 ms | 0 - 29 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.325 ms | 0 - 27 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.597 ms | 0 - 30 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.onnx |
Facial-Attribute-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 1.417 ms | 0 - 26 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 1.678 ms | 0 - 11 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 75.897 ms | 2 - 5 MB | FP32 | CPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.447 ms | 0 - 31 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.485 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | SA7255P ADP | SA7255P | TFLITE | 4.934 ms | 0 - 20 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | SA7255P ADP | SA7255P | QNN | 5.238 ms | 0 - 9 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.451 ms | 0 - 22 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.489 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | SA8295P ADP | SA8295P | TFLITE | 0.895 ms | 0 - 27 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | SA8295P ADP | SA8295P | QNN | 1.094 ms | 0 - 14 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.436 ms | 0 - 21 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.487 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | SA8775P ADP | SA8775P | TFLITE | 0.806 ms | 0 - 21 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | SA8775P ADP | SA8775P | QNN | 1.01 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.543 ms | 0 - 30 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.tflite |
Facial-Attribute-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.657 ms | 0 - 28 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.628 ms | 1 - 1 MB | INT8 | NPU | Use Export Script |
Facial-Attribute-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.984 ms | 15 - 15 MB | INT8 | NPU | Facial-Attribute-Detection-Quantized.onnx |
Installation
This model can be installed as a Python package via pip.
pip install qai-hub-models
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.face_attrib_net_quantized.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.face_attrib_net_quantized.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.face_attrib_net_quantized.export
Profiling Results
------------------------------------------------------------
Facial-Attribute-Detection-Quantized
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 0.4
Estimated peak memory usage (MB): [0, 30]
Total # Ops : 168
Compute Unit(s) : NPU (168 ops)
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.face_attrib_net_quantized.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.face_attrib_net_quantized.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Facial-Attribute-Detection-Quantized's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Facial-Attribute-Detection-Quantized can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.