HRNetPose: Optimized for Mobile Deployment
Perform accurate human pose estimation
HRNet performs pose estimation in high-resolution representations.
This model is an implementation of HRNetPose found here.
This repository provides scripts to run HRNetPose on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.pose_estimation
- Model Stats:
- Model checkpoint: hrnet_posenet_FP32_state_dict
- Input resolution: 256x192
- Number of parameters: 28.5M
- Model size (float): 109 MB
- Model size (w8a8): 28.1 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 14.342 ms | 0 - 79 MB | NPU | HRNetPose.tflite |
HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 14.101 ms | 0 - 41 MB | NPU | HRNetPose.dlc |
HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.64 ms | 0 - 122 MB | NPU | HRNetPose.tflite |
HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 4.773 ms | 0 - 57 MB | NPU | HRNetPose.dlc |
HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.668 ms | 0 - 19 MB | NPU | HRNetPose.tflite |
HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.607 ms | 1 - 14 MB | NPU | HRNetPose.dlc |
HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 2.69 ms | 0 - 125 MB | NPU | HRNetPose.onnx.zip |
HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.348 ms | 0 - 80 MB | NPU | HRNetPose.tflite |
HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.265 ms | 1 - 41 MB | NPU | HRNetPose.dlc |
HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 14.342 ms | 0 - 79 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 14.101 ms | 0 - 41 MB | NPU | HRNetPose.dlc |
HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.618 ms | 0 - 28 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.596 ms | 1 - 17 MB | NPU | HRNetPose.dlc |
HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.514 ms | 0 - 73 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 4.496 ms | 1 - 40 MB | NPU | HRNetPose.dlc |
HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.623 ms | 0 - 18 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.612 ms | 0 - 14 MB | NPU | HRNetPose.dlc |
HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.348 ms | 0 - 80 MB | NPU | HRNetPose.tflite |
HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.265 ms | 1 - 41 MB | NPU | HRNetPose.dlc |
HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.893 ms | 0 - 120 MB | NPU | HRNetPose.tflite |
HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.982 ms | 1 - 61 MB | NPU | HRNetPose.dlc |
HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.008 ms | 0 - 81 MB | NPU | HRNetPose.onnx.zip |
HRNetPose | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.568 ms | 0 - 83 MB | NPU | HRNetPose.tflite |
HRNetPose | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.552 ms | 1 - 50 MB | NPU | HRNetPose.dlc |
HRNetPose | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.687 ms | 0 - 51 MB | NPU | HRNetPose.onnx.zip |
HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.866 ms | 111 - 111 MB | NPU | HRNetPose.dlc |
HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.725 ms | 55 - 55 MB | NPU | HRNetPose.onnx.zip |
HRNetPose | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 5.209 ms | 0 - 67 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 2.737 ms | 0 - 93 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.883 ms | 0 - 23 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 2.317 ms | 0 - 67 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 8.776 ms | 0 - 97 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 198.775 ms | 18 - 46 MB | CPU | HRNetPose.onnx.zip |
HRNetPose | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 210.372 ms | 15 - 46 MB | CPU | HRNetPose.onnx.zip |
HRNetPose | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 5.209 ms | 0 - 67 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.885 ms | 0 - 16 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 3.05 ms | 0 - 71 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.921 ms | 0 - 15 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 2.317 ms | 0 - 67 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 1.386 ms | 0 - 92 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 1.019 ms | 0 - 71 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 101.666 ms | 224 - 1921 MB | NPU | HRNetPose.onnx.zip |
HRNetPose | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 2.157 ms | 138 - 138 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 149.93 ms | 226 - 226 MB | NPU | HRNetPose.onnx.zip |
HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.6 ms | 0 - 64 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.83 ms | 0 - 65 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.186 ms | 0 - 102 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.684 ms | 0 - 92 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.952 ms | 0 - 162 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.171 ms | 0 - 36 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 62.175 ms | 108 - 363 MB | NPU | HRNetPose.onnx.zip |
HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.298 ms | 0 - 64 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.47 ms | 0 - 66 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 3.689 ms | 0 - 79 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 5.543 ms | 0 - 91 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 142.09 ms | 15 - 42 MB | CPU | HRNetPose.onnx.zip |
HRNetPose | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 17.59 ms | 0 - 2 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 128.583 ms | 11 - 45 MB | CPU | HRNetPose.onnx.zip |
HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.6 ms | 0 - 64 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.83 ms | 0 - 65 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.96 ms | 0 - 165 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.169 ms | 0 - 47 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.676 ms | 0 - 68 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.877 ms | 0 - 72 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.957 ms | 0 - 163 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.165 ms | 0 - 82 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.298 ms | 0 - 64 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.47 ms | 0 - 66 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.704 ms | 0 - 98 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.82 ms | 0 - 94 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 47.296 ms | 122 - 2091 MB | NPU | HRNetPose.onnx.zip |
HRNetPose | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.574 ms | 0 - 71 MB | NPU | HRNetPose.tflite |
HRNetPose | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.631 ms | 0 - 74 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 43.047 ms | 94 - 869 MB | NPU | HRNetPose.onnx.zip |
HRNetPose | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.305 ms | 134 - 134 MB | NPU | HRNetPose.dlc |
HRNetPose | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 60.036 ms | 116 - 116 MB | NPU | HRNetPose.onnx.zip |
Installation
Install the package via pip:
pip install "qai-hub-models[hrnet-pose]" torch==2.4.1 --trusted-host download.openmmlab.com -f https://download.openmmlab.com/mmcv/dist/cpu/torch2.4/index.html -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.hrnet_pose.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.hrnet_pose.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.hrnet_pose.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.hrnet_pose import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.hrnet_pose.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.hrnet_pose.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on HRNetPose's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of HRNetPose can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 1,186