PPE-Detection: Optimized for Mobile Deployment
Object detection for personal protective equipments (PPE)
Detect if a person is wearing personal protective equipments (PPE) in real-time. This model's architecture was developed by Qualcomm. The model was trained by Qualcomm on a proprietary dataset, but can be used on any image.
This repository provides scripts to run PPE-Detection on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.object_detection
- Model Stats:
- Inference latency: RealTime
- Input resolution: 320x192
- Number of output classes: 2
- Number of parameters: 6.19M
- Model size (float): 23.6 MB
- Model size (w8a8): 6.23 MB
- Model size (w8a16): 6.65 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| PPE-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.122 ms | 0 - 23 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 4.062 ms | 1 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.411 ms | 0 - 41 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.532 ms | 1 - 29 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.673 ms | 0 - 136 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.663 ms | 1 - 71 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 1.004 ms | 0 - 54 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.284 ms | 0 - 23 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.239 ms | 0 - 19 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.122 ms | 0 - 23 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 4.062 ms | 1 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.667 ms | 0 - 136 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.662 ms | 0 - 73 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.812 ms | 0 - 26 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.843 ms | 1 - 24 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.67 ms | 0 - 136 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.662 ms | 0 - 72 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.284 ms | 0 - 23 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.239 ms | 0 - 19 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.486 ms | 0 - 40 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.484 ms | 1 - 33 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.692 ms | 0 - 36 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.406 ms | 0 - 24 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.387 ms | 1 - 27 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.554 ms | 0 - 27 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.343 ms | 0 - 25 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.343 ms | 0 - 26 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.539 ms | 1 - 29 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.793 ms | 54 - 54 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.929 ms | 12 - 12 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 1.439 ms | 0 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.713 ms | 0 - 33 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.478 ms | 0 - 48 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 0.813 ms | 0 - 49 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.701 ms | 0 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 44.121 ms | 26 - 38 MB | CPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a16 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 39.146 ms | 18 - 37 MB | CPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 1.439 ms | 0 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.478 ms | 0 - 5 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.101 ms | 0 - 26 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.701 ms | 0 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.327 ms | 0 - 35 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.494 ms | 0 - 45 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.267 ms | 0 - 23 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.407 ms | 0 - 24 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.229 ms | 0 - 21 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.366 ms | 0 - 29 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.606 ms | 51 - 51 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.706 ms | 6 - 6 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 0.873 ms | 0 - 19 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 0.812 ms | 0 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 0.36 ms | 0 - 39 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 0.511 ms | 0 - 34 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.25 ms | 0 - 50 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 0.244 ms | 0 - 50 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 0.471 ms | 0 - 49 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 0.447 ms | 0 - 18 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 0.423 ms | 0 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 1.319 ms | 0 - 28 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 1.651 ms | 0 - 29 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | ONNX | 8.06 ms | 5 - 19 MB | CPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 5.344 ms | 0 - 11 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 7.352 ms | 5 - 18 MB | CPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 0.873 ms | 0 - 19 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 0.812 ms | 0 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.254 ms | 0 - 50 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 0.239 ms | 0 - 51 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 0.707 ms | 0 - 24 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 0.703 ms | 0 - 25 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.249 ms | 0 - 50 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 0.246 ms | 0 - 51 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 0.447 ms | 0 - 18 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 0.423 ms | 0 - 20 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.18 ms | 0 - 43 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.177 ms | 0 - 42 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 0.324 ms | 0 - 36 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 0.152 ms | 0 - 22 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 0.154 ms | 0 - 23 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 0.279 ms | 0 - 23 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 0.138 ms | 0 - 21 MB | NPU | PPE-Detection.tflite |
| PPE-Detection | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 0.149 ms | 0 - 22 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 0.275 ms | 0 - 24 MB | NPU | PPE-Detection.onnx.zip |
| PPE-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 0.337 ms | 54 - 54 MB | NPU | PPE-Detection.dlc |
| PPE-Detection | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.377 ms | 6 - 6 MB | NPU | PPE-Detection.onnx.zip |
Installation
Install the package via pip:
pip install qai-hub-models
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.gear_guard_net.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.gear_guard_net.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.gear_guard_net.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.gear_guard_net import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.gear_guard_net.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.gear_guard_net.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on PPE-Detection's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of PPE-Detection can be found here.
- The license for the compiled assets for on-device deployment can be found here
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 265
