PidNet: Optimized for Mobile Deployment

Segment images or video by class in real-time on device

PIDNet (Proportional-Integral-Derivative Network) is a real-time semantic segmentation model based on PID controllers

This model is an implementation of PidNet found here.

This repository provides scripts to run PidNet on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: PIDNet_S_Cityscapes_val.pt
    • Inference latency: RealTime
    • Input resolution: 1024x2048
    • Number of output classes: 19
    • Number of parameters: 8.06M
    • Model size (float): 29.1 MB
    • Model size (w8a8): 8.02 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
PidNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 136.955 ms 0 - 52 MB NPU PidNet.tflite
PidNet float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 114.326 ms 24 - 93 MB NPU PidNet.dlc
PidNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 57.342 ms 2 - 69 MB NPU PidNet.tflite
PidNet float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 63.582 ms 17 - 102 MB NPU PidNet.dlc
PidNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 47.158 ms 2 - 20 MB NPU PidNet.tflite
PidNet float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 36.05 ms 24 - 58 MB NPU PidNet.dlc
PidNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 57.395 ms 0 - 52 MB NPU PidNet.tflite
PidNet float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 45.437 ms 24 - 91 MB NPU PidNet.dlc
PidNet float SA7255P ADP Qualcomm® SA7255P TFLITE 136.955 ms 0 - 52 MB NPU PidNet.tflite
PidNet float SA7255P ADP Qualcomm® SA7255P QNN_DLC 114.326 ms 24 - 93 MB NPU PidNet.dlc
PidNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 47.684 ms 2 - 23 MB NPU PidNet.tflite
PidNet float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 36.468 ms 24 - 57 MB NPU PidNet.dlc
PidNet float SA8295P ADP Qualcomm® SA8295P TFLITE 64.503 ms 2 - 55 MB NPU PidNet.tflite
PidNet float SA8295P ADP Qualcomm® SA8295P QNN_DLC 52.249 ms 24 - 105 MB NPU PidNet.dlc
PidNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 47.417 ms 2 - 21 MB NPU PidNet.tflite
PidNet float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 36.101 ms 24 - 61 MB NPU PidNet.dlc
PidNet float SA8775P ADP Qualcomm® SA8775P TFLITE 57.395 ms 0 - 52 MB NPU PidNet.tflite
PidNet float SA8775P ADP Qualcomm® SA8775P QNN_DLC 45.437 ms 24 - 91 MB NPU PidNet.dlc
PidNet float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 47.366 ms 2 - 19 MB NPU PidNet.tflite
PidNet float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 36.566 ms 24 - 59 MB NPU PidNet.dlc
PidNet float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 30.736 ms 29 - 88 MB NPU PidNet.onnx
PidNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 31.649 ms 2 - 67 MB NPU PidNet.tflite
PidNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 26.036 ms 24 - 94 MB NPU PidNet.dlc
PidNet float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 20.561 ms 22 - 92 MB NPU PidNet.onnx
PidNet float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 32.063 ms 1 - 56 MB NPU PidNet.tflite
PidNet float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 24.254 ms 24 - 95 MB NPU PidNet.dlc
PidNet float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 18.726 ms 29 - 92 MB NPU PidNet.onnx
PidNet float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 38.853 ms 39 - 39 MB NPU PidNet.dlc
PidNet float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 34.492 ms 24 - 24 MB NPU PidNet.onnx
PidNet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 102.856 ms 0 - 37 MB NPU PidNet.tflite
PidNet w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 143.203 ms 6 - 60 MB NPU PidNet.dlc
PidNet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 52.384 ms 1 - 52 MB NPU PidNet.tflite
PidNet w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 95.467 ms 6 - 71 MB NPU PidNet.dlc
PidNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 51.368 ms 1 - 17 MB NPU PidNet.tflite
PidNet w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 73.244 ms 6 - 30 MB NPU PidNet.dlc
PidNet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 52.179 ms 1 - 38 MB NPU PidNet.tflite
PidNet w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 74.204 ms 6 - 62 MB NPU PidNet.dlc
PidNet w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 179.658 ms 2 - 81 MB NPU PidNet.tflite
PidNet w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 102.856 ms 0 - 37 MB NPU PidNet.tflite
PidNet w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 143.203 ms 6 - 60 MB NPU PidNet.dlc
PidNet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 51.54 ms 0 - 21 MB NPU PidNet.tflite
PidNet w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 73.107 ms 6 - 34 MB NPU PidNet.dlc
PidNet w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 61.164 ms 1 - 41 MB NPU PidNet.tflite
PidNet w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 85.321 ms 6 - 62 MB NPU PidNet.dlc
PidNet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 51.425 ms 0 - 18 MB NPU PidNet.tflite
PidNet w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 73.245 ms 6 - 30 MB NPU PidNet.dlc
PidNet w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 52.179 ms 1 - 38 MB NPU PidNet.tflite
PidNet w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 74.204 ms 6 - 62 MB NPU PidNet.dlc
PidNet w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 51.332 ms 1 - 21 MB NPU PidNet.tflite
PidNet w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 73.083 ms 6 - 33 MB NPU PidNet.dlc
PidNet w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 77.667 ms 88 - 105 MB NPU PidNet.onnx
PidNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 39.242 ms 0 - 48 MB NPU PidNet.tflite
PidNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 55.524 ms 6 - 73 MB NPU PidNet.dlc
PidNet w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 59.685 ms 81 - 140 MB NPU PidNet.onnx
PidNet w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 38.992 ms 0 - 42 MB NPU PidNet.tflite
PidNet w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 61.574 ms 6 - 75 MB NPU PidNet.dlc
PidNet w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 65.991 ms 101 - 154 MB NPU PidNet.onnx
PidNet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 78.307 ms 19 - 19 MB NPU PidNet.dlc
PidNet w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 69.065 ms 132 - 132 MB NPU PidNet.onnx

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.pidnet.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.pidnet.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.pidnet.export
Profiling Results
------------------------------------------------------------
PidNet
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : TFLITE                               
Estimated inference time (ms)   : 137.0                                
Estimated peak memory usage (MB): [0, 52]                              
Total # Ops                     : 169                                  
Compute Unit(s)                 : npu (169 ops) gpu (0 ops) cpu (0 ops)

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.pidnet import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.pidnet.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.pidnet.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on PidNet's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of PidNet can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
41
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support