ResNet-2Plus1D: Optimized for Mobile Deployment
Sports and human action recognition in videos
ResNet (2+1)D Convolutions is a network which explicitly factorizes 3D convolution into two separate and successive operations, a 2D spatial convolution and a 1D temporal convolution. It used for video understanding applications.
This model is an implementation of ResNet-2Plus1D found here.
This repository provides scripts to run ResNet-2Plus1D on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.video_classification
- Model Stats:
- Model checkpoint: Kinetics-400
- Input resolution: 112x112
- Number of parameters: 31.5M
- Model size (float): 120 MB
- Model size (w8a8): 30.8 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
ResNet-2Plus1D | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 281.969 ms | 28 - 66 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 82.344 ms | 0 - 65 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 121.99 ms | 28 - 94 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 25.597 ms | 2 - 85 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 113.792 ms | 3 - 746 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 12.791 ms | 2 - 28 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 126.567 ms | 28 - 67 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 21.594 ms | 1 - 64 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 281.969 ms | 28 - 66 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 82.344 ms | 0 - 65 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 114.514 ms | 7 - 789 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 12.816 ms | 2 - 21 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 139.695 ms | 28 - 65 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 23.162 ms | 0 - 55 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 115.413 ms | 7 - 766 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 12.802 ms | 2 - 25 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 126.567 ms | 28 - 67 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 21.594 ms | 1 - 64 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 114.486 ms | 0 - 768 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 12.778 ms | 2 - 25 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 12.083 ms | 0 - 146 MB | NPU | ResNet-2Plus1D.onnx |
ResNet-2Plus1D | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 86.573 ms | 26 - 86 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 9.271 ms | 2 - 91 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 9.346 ms | 2 - 96 MB | NPU | ResNet-2Plus1D.onnx |
ResNet-2Plus1D | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 100.682 ms | 26 - 66 MB | NPU | ResNet-2Plus1D.tflite |
ResNet-2Plus1D | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 9.006 ms | 2 - 70 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 8.909 ms | 2 - 70 MB | NPU | ResNet-2Plus1D.onnx |
ResNet-2Plus1D | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 13.799 ms | 867 - 867 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 12.68 ms | 61 - 61 MB | NPU | ResNet-2Plus1D.onnx |
ResNet-2Plus1D | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 12.232 ms | 1 - 39 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 5.83 ms | 1 - 62 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 3.927 ms | 0 - 12 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.334 ms | 1 - 40 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 24.098 ms | 1 - 49 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 12.232 ms | 1 - 39 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 3.912 ms | 1 - 12 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 7.033 ms | 1 - 41 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 3.926 ms | 1 - 11 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.334 ms | 1 - 40 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 3.929 ms | 1 - 17 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 3.768 ms | 0 - 68 MB | NPU | ResNet-2Plus1D.onnx |
ResNet-2Plus1D | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.829 ms | 1 - 59 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.622 ms | 0 - 59 MB | NPU | ResNet-2Plus1D.onnx |
ResNet-2Plus1D | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 2.54 ms | 1 - 46 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 2.654 ms | 0 - 44 MB | NPU | ResNet-2Plus1D.onnx |
ResNet-2Plus1D | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 4.475 ms | 310 - 310 MB | NPU | ResNet-2Plus1D.dlc |
ResNet-2Plus1D | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 3.731 ms | 31 - 31 MB | NPU | ResNet-2Plus1D.onnx |
Installation
Install the package via pip:
pip install "qai-hub-models[resnet-2plus1d]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.resnet_2plus1d.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.resnet_2plus1d.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.resnet_2plus1d.export
Profiling Results
------------------------------------------------------------
ResNet-2Plus1D
Device : cs_8275 (ANDROID 14)
Runtime : TFLITE
Estimated inference time (ms) : 282.0
Estimated peak memory usage (MB): [28, 66]
Total # Ops : 94
Compute Unit(s) : npu (87 ops) gpu (0 ops) cpu (7 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.resnet_2plus1d import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S24")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on ResNet-2Plus1D's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of ResNet-2Plus1D can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 19