ResNet101: Optimized for Mobile Deployment

Imagenet classifier and general purpose backbone

ResNet101 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of ResNet101 found here.

This repository provides scripts to run ResNet101 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_classification
  • Model Stats:
    • Model checkpoint: Imagenet
    • Input resolution: 224x224
    • Number of parameters: 44.5M
    • Model size (float): 170 MB
    • Model size (w8a8): 43.9 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
ResNet101 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 18.43 ms 0 - 94 MB NPU ResNet101.tflite
ResNet101 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 18.281 ms 1 - 44 MB NPU ResNet101.dlc
ResNet101 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 4.722 ms 0 - 101 MB NPU ResNet101.tflite
ResNet101 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 5.844 ms 1 - 41 MB NPU ResNet101.dlc
ResNet101 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 3.385 ms 0 - 69 MB NPU ResNet101.tflite
ResNet101 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 3.281 ms 1 - 14 MB NPU ResNet101.dlc
ResNet101 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 3.359 ms 1 - 13 MB NPU ResNet101.onnx.zip
ResNet101 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 5.555 ms 0 - 94 MB NPU ResNet101.tflite
ResNet101 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 5.395 ms 1 - 44 MB NPU ResNet101.dlc
ResNet101 float SA7255P ADP Qualcomm® SA7255P TFLITE 18.43 ms 0 - 94 MB NPU ResNet101.tflite
ResNet101 float SA7255P ADP Qualcomm® SA7255P QNN_DLC 18.281 ms 1 - 44 MB NPU ResNet101.dlc
ResNet101 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 3.363 ms 0 - 100 MB NPU ResNet101.tflite
ResNet101 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 3.288 ms 1 - 16 MB NPU ResNet101.dlc
ResNet101 float SA8295P ADP Qualcomm® SA8295P TFLITE 5.63 ms 0 - 84 MB NPU ResNet101.tflite
ResNet101 float SA8295P ADP Qualcomm® SA8295P QNN_DLC 5.535 ms 0 - 34 MB NPU ResNet101.dlc
ResNet101 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 3.372 ms 0 - 35 MB NPU ResNet101.tflite
ResNet101 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 3.293 ms 1 - 13 MB NPU ResNet101.dlc
ResNet101 float SA8775P ADP Qualcomm® SA8775P TFLITE 5.555 ms 0 - 94 MB NPU ResNet101.tflite
ResNet101 float SA8775P ADP Qualcomm® SA8775P QNN_DLC 5.395 ms 1 - 44 MB NPU ResNet101.dlc
ResNet101 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 2.444 ms 0 - 104 MB NPU ResNet101.tflite
ResNet101 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 2.365 ms 0 - 54 MB NPU ResNet101.dlc
ResNet101 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 2.406 ms 0 - 50 MB NPU ResNet101.onnx.zip
ResNet101 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 1.976 ms 0 - 100 MB NPU ResNet101.tflite
ResNet101 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 1.954 ms 1 - 50 MB NPU ResNet101.dlc
ResNet101 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 2.103 ms 0 - 44 MB NPU ResNet101.onnx.zip
ResNet101 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 1.717 ms 0 - 96 MB NPU ResNet101.tflite
ResNet101 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 1.652 ms 1 - 50 MB NPU ResNet101.dlc
ResNet101 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 1.771 ms 0 - 45 MB NPU ResNet101.onnx.zip
ResNet101 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 3.48 ms 273 - 273 MB NPU ResNet101.dlc
ResNet101 float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 3.291 ms 86 - 86 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 2.679 ms 0 - 61 MB NPU ResNet101.tflite
ResNet101 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 2.977 ms 1 - 64 MB NPU ResNet101.dlc
ResNet101 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 1.365 ms 0 - 111 MB NPU ResNet101.tflite
ResNet101 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.798 ms 0 - 96 MB NPU ResNet101.dlc
ResNet101 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 1.149 ms 0 - 229 MB NPU ResNet101.tflite
ResNet101 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 1.274 ms 0 - 212 MB NPU ResNet101.dlc
ResNet101 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 1.558 ms 0 - 184 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 1.329 ms 0 - 61 MB NPU ResNet101.tflite
ResNet101 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 1.465 ms 0 - 64 MB NPU ResNet101.dlc
ResNet101 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 4.482 ms 0 - 81 MB NPU ResNet101.tflite
ResNet101 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 6.515 ms 0 - 83 MB NPU ResNet101.dlc
ResNet101 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) ONNX 46.769 ms 13 - 33 MB CPU ResNet101.onnx.zip
ResNet101 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 17.471 ms 0 - 2 MB NPU ResNet101.tflite
ResNet101 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 45.171 ms 14 - 52 MB CPU ResNet101.onnx.zip
ResNet101 w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 2.679 ms 0 - 61 MB NPU ResNet101.tflite
ResNet101 w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 2.977 ms 1 - 64 MB NPU ResNet101.dlc
ResNet101 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 1.15 ms 0 - 229 MB NPU ResNet101.tflite
ResNet101 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 1.285 ms 0 - 31 MB NPU ResNet101.dlc
ResNet101 w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 1.779 ms 0 - 65 MB NPU ResNet101.tflite
ResNet101 w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 1.902 ms 0 - 68 MB NPU ResNet101.dlc
ResNet101 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 1.157 ms 0 - 231 MB NPU ResNet101.tflite
ResNet101 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 1.28 ms 0 - 199 MB NPU ResNet101.dlc
ResNet101 w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 1.329 ms 0 - 61 MB NPU ResNet101.tflite
ResNet101 w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 1.465 ms 0 - 64 MB NPU ResNet101.dlc
ResNet101 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.869 ms 0 - 104 MB NPU ResNet101.tflite
ResNet101 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.968 ms 0 - 96 MB NPU ResNet101.dlc
ResNet101 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 1.159 ms 0 - 107 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 0.754 ms 0 - 67 MB NPU ResNet101.tflite
ResNet101 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.78 ms 0 - 71 MB NPU ResNet101.dlc
ResNet101 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 0.995 ms 0 - 70 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile TFLITE 1.686 ms 0 - 75 MB NPU ResNet101.tflite
ResNet101 w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile QNN_DLC 1.835 ms 0 - 78 MB NPU ResNet101.dlc
ResNet101 w8a8 Snapdragon 7 Gen 4 QRD Snapdragon® 7 Gen 4 Mobile ONNX 40.329 ms 14 - 32 MB CPU ResNet101.onnx.zip
ResNet101 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.713 ms 0 - 63 MB NPU ResNet101.tflite
ResNet101 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.746 ms 0 - 69 MB NPU ResNet101.dlc
ResNet101 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 0.986 ms 0 - 71 MB NPU ResNet101.onnx.zip
ResNet101 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 1.28 ms 233 - 233 MB NPU ResNet101.dlc
ResNet101 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 1.345 ms 46 - 46 MB NPU ResNet101.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.resnet101.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.resnet101.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.resnet101.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.resnet101 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.resnet101.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.resnet101.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on ResNet101's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of ResNet101 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
213
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support