Segformer-Base: Optimized for Mobile Deployment

Real-time object segmentation

Segformer Base is a machine learning model that predicts masks and classes of objects in an image.

This model is an implementation of Segformer-Base found here.

This repository provides scripts to run Segformer-Base on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: nvidia/segformer-b0-finetuned-ade-512-512
    • Input resolution: 512x512
    • Number of output classes: 150
    • Number of parameters: 3.75M
    • Model size (float): 14.4 MB
    • Model size (w8a16): 4.57 MB
    • Model size (w8a8): 3.90 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
Segformer-Base float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 221.556 ms 9 - 66 MB NPU Segformer-Base.tflite
Segformer-Base float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 221.863 ms 3 - 50 MB NPU Segformer-Base.dlc
Segformer-Base float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 114.26 ms 9 - 70 MB NPU Segformer-Base.tflite
Segformer-Base float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 118.529 ms 3 - 59 MB NPU Segformer-Base.dlc
Segformer-Base float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 114.76 ms 0 - 39 MB NPU Segformer-Base.tflite
Segformer-Base float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 113.569 ms 3 - 23 MB NPU Segformer-Base.dlc
Segformer-Base float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 117.148 ms 10 - 65 MB NPU Segformer-Base.tflite
Segformer-Base float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 116.315 ms 2 - 51 MB NPU Segformer-Base.dlc
Segformer-Base float SA7255P ADP Qualcomm® SA7255P TFLITE 221.556 ms 9 - 66 MB NPU Segformer-Base.tflite
Segformer-Base float SA7255P ADP Qualcomm® SA7255P QNN_DLC 221.863 ms 3 - 50 MB NPU Segformer-Base.dlc
Segformer-Base float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 114.524 ms 0 - 34 MB NPU Segformer-Base.tflite
Segformer-Base float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 114.118 ms 3 - 23 MB NPU Segformer-Base.dlc
Segformer-Base float SA8295P ADP Qualcomm® SA8295P TFLITE 125.923 ms 9 - 62 MB NPU Segformer-Base.tflite
Segformer-Base float SA8295P ADP Qualcomm® SA8295P QNN_DLC 124.125 ms 0 - 56 MB NPU Segformer-Base.dlc
Segformer-Base float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 114.745 ms 0 - 37 MB NPU Segformer-Base.tflite
Segformer-Base float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 113.858 ms 3 - 21 MB NPU Segformer-Base.dlc
Segformer-Base float SA8775P ADP Qualcomm® SA8775P TFLITE 117.148 ms 10 - 65 MB NPU Segformer-Base.tflite
Segformer-Base float SA8775P ADP Qualcomm® SA8775P QNN_DLC 116.315 ms 2 - 51 MB NPU Segformer-Base.dlc
Segformer-Base float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 114.914 ms 0 - 42 MB NPU Segformer-Base.tflite
Segformer-Base float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 114.277 ms 3 - 19 MB NPU Segformer-Base.dlc
Segformer-Base float Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 110.684 ms 22 - 53 MB NPU Segformer-Base.onnx
Segformer-Base float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 86.645 ms 8 - 72 MB NPU Segformer-Base.tflite
Segformer-Base float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 86.093 ms 3 - 60 MB NPU Segformer-Base.dlc
Segformer-Base float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 84.246 ms 26 - 84 MB NPU Segformer-Base.onnx
Segformer-Base float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 76.112 ms 9 - 62 MB NPU Segformer-Base.tflite
Segformer-Base float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 92.911 ms 3 - 54 MB NPU Segformer-Base.dlc
Segformer-Base float Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 94.634 ms 26 - 73 MB NPU Segformer-Base.onnx
Segformer-Base float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 119.744 ms 31 - 31 MB NPU Segformer-Base.dlc
Segformer-Base float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 118.293 ms 35 - 35 MB NPU Segformer-Base.onnx
Segformer-Base w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 22.12 ms 2 - 37 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 14.453 ms 2 - 46 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 12.227 ms 2 - 14 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 12.605 ms 2 - 38 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 44.72 ms 2 - 69 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 SA7255P ADP Qualcomm® SA7255P QNN_DLC 22.12 ms 2 - 37 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 12.347 ms 2 - 14 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 SA8295P ADP Qualcomm® SA8295P QNN_DLC 14.846 ms 2 - 38 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 12.255 ms 2 - 13 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 SA8775P ADP Qualcomm® SA8775P QNN_DLC 12.605 ms 2 - 38 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 12.298 ms 2 - 14 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 39.84 ms 31 - 105 MB NPU Segformer-Base.onnx
Segformer-Base w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 8.226 ms 2 - 51 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 27.765 ms 24 - 282 MB NPU Segformer-Base.onnx
Segformer-Base w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 7.417 ms 2 - 43 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 29.544 ms 29 - 241 MB NPU Segformer-Base.onnx
Segformer-Base w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 13.624 ms 1 - 1 MB NPU Segformer-Base.dlc
Segformer-Base w8a16 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 45.624 ms 58 - 58 MB NPU Segformer-Base.onnx
Segformer-Base w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 23.299 ms 2 - 40 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 12.961 ms 1 - 33 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 13.628 ms 2 - 47 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 8.276 ms 1 - 43 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 12.945 ms 2 - 12 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 7.134 ms 0 - 10 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 13.523 ms 2 - 41 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 7.764 ms 1 - 34 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 126.846 ms 15 - 55 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 26.472 ms 1 - 49 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 425.541 ms 45 - 61 MB GPU Segformer-Base.tflite
Segformer-Base w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 23.299 ms 2 - 40 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 12.961 ms 1 - 33 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 13.006 ms 2 - 17 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 7.105 ms 0 - 10 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 15.496 ms 2 - 42 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 8.945 ms 1 - 35 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 12.996 ms 2 - 17 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 7.109 ms 1 - 8 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 13.523 ms 2 - 41 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 7.764 ms 1 - 34 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile TFLITE 12.983 ms 2 - 13 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile QNN_DLC 7.108 ms 1 - 11 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 Samsung Galaxy S23 Snapdragon® 8 Gen 2 Mobile ONNX 17.99 ms 3 - 25 MB NPU Segformer-Base.onnx
Segformer-Base w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 8.881 ms 2 - 49 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 4.766 ms 1 - 45 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 12.54 ms 7 - 71 MB NPU Segformer-Base.onnx
Segformer-Base w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile TFLITE 9.246 ms 2 - 44 MB NPU Segformer-Base.tflite
Segformer-Base w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile QNN_DLC 4.355 ms 1 - 40 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 Snapdragon 8 Elite QRD Snapdragon® 8 Elite Mobile ONNX 11.89 ms 7 - 59 MB NPU Segformer-Base.onnx
Segformer-Base w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 7.993 ms 0 - 0 MB NPU Segformer-Base.dlc
Segformer-Base w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 19.401 ms 9 - 9 MB NPU Segformer-Base.onnx

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.segformer_base.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.segformer_base.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.segformer_base.export
Profiling Results
------------------------------------------------------------
Segformer-Base
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : TFLITE                               
Estimated inference time (ms)   : 221.6                                
Estimated peak memory usage (MB): [9, 66]                              
Total # Ops                     : 545                                  
Compute Unit(s)                 : npu (545 ops) gpu (0 ops) cpu (0 ops)

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.segformer_base import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.segformer_base.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.segformer_base.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Segformer-Base's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Segformer-Base can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
31
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support