Shufflenet-v2: Optimized for Mobile Deployment

Imagenet classifier and general purpose backbone

ShufflenetV2 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This model is an implementation of Shufflenet-v2 found here.

This repository provides scripts to run Shufflenet-v2 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.image_classification
  • Model Stats:
    • Model checkpoint: Imagenet
    • Input resolution: 224x224
    • Number of parameters: 1.37M
    • Model size (float): 5.24 MB
    • Model size (w8a8): 1.47 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
Shufflenet-v2 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 1.615 ms 0 - 19 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 1.578 ms 1 - 21 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 0.784 ms 0 - 28 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 1.185 ms 1 - 33 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 0.702 ms 0 - 30 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 0.695 ms 1 - 19 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 1.006 ms 0 - 18 MB NPU Shufflenet-v2.onnx.zip
Shufflenet-v2 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 0.972 ms 0 - 19 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 0.944 ms 0 - 20 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float SA7255P ADP Qualcomm® SA7255P TFLITE 1.615 ms 0 - 19 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float SA7255P ADP Qualcomm® SA7255P QNN_DLC 1.578 ms 1 - 21 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 0.704 ms 0 - 29 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 0.695 ms 0 - 19 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float SA8295P ADP Qualcomm® SA8295P TFLITE 1.201 ms 0 - 25 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float SA8295P ADP Qualcomm® SA8295P QNN_DLC 1.143 ms 1 - 25 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 0.703 ms 0 - 30 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 0.693 ms 0 - 19 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float SA8775P ADP Qualcomm® SA8775P TFLITE 0.972 ms 0 - 19 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float SA8775P ADP Qualcomm® SA8775P QNN_DLC 0.944 ms 0 - 20 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.45 ms 0 - 28 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.457 ms 0 - 26 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 0.605 ms 0 - 27 MB NPU Shufflenet-v2.onnx.zip
Shufflenet-v2 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 0.368 ms 0 - 27 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.346 ms 1 - 26 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 0.537 ms 0 - 28 MB NPU Shufflenet-v2.onnx.zip
Shufflenet-v2 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.321 ms 0 - 23 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.272 ms 0 - 25 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 0.547 ms 1 - 23 MB NPU Shufflenet-v2.onnx.zip
Shufflenet-v2 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 0.849 ms 16 - 16 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 0.934 ms 3 - 3 MB NPU Shufflenet-v2.onnx.zip
Shufflenet-v2 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 0.779 ms 0 - 16 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 1.071 ms 0 - 17 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 0.35 ms 0 - 27 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 0.538 ms 0 - 34 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 0.311 ms 0 - 11 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 0.48 ms 0 - 10 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 7.731 ms 0 - 105 MB NPU Shufflenet-v2.onnx.zip
Shufflenet-v2 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 0.506 ms 0 - 16 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 0.652 ms 0 - 17 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) TFLITE 0.629 ms 0 - 20 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 1.063 ms 0 - 20 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) ONNX 3.865 ms 2 - 14 MB CPU Shufflenet-v2.onnx.zip
Shufflenet-v2 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) TFLITE 11.289 ms 0 - 6 MB CPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 RB5 (Proxy) Qualcomm® QCS8250 (Proxy) ONNX 3.071 ms 0 - 3 MB CPU Shufflenet-v2.onnx.zip
Shufflenet-v2 w8a8 SA7255P ADP Qualcomm® SA7255P TFLITE 0.779 ms 0 - 16 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 SA7255P ADP Qualcomm® SA7255P QNN_DLC 1.071 ms 0 - 17 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 0.314 ms 0 - 10 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 0.48 ms 0 - 10 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 SA8295P ADP Qualcomm® SA8295P TFLITE 0.631 ms 0 - 25 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 SA8295P ADP Qualcomm® SA8295P QNN_DLC 0.802 ms 0 - 23 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 0.318 ms 0 - 11 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 0.475 ms 0 - 5 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 SA8775P ADP Qualcomm® SA8775P TFLITE 0.506 ms 0 - 16 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 SA8775P ADP Qualcomm® SA8775P QNN_DLC 0.652 ms 0 - 17 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 0.221 ms 0 - 28 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 0.342 ms 0 - 30 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 5.897 ms 1 - 178 MB NPU Shufflenet-v2.onnx.zip
Shufflenet-v2 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 0.205 ms 0 - 21 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 0.255 ms 0 - 24 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 5.204 ms 4 - 176 MB NPU Shufflenet-v2.onnx.zip
Shufflenet-v2 w8a8 Snapdragon 7 Gen 5 QRD Snapdragon® 7 Gen 5 Mobile TFLITE 0.306 ms 0 - 23 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 Snapdragon 7 Gen 5 QRD Snapdragon® 7 Gen 5 Mobile QNN_DLC 0.453 ms 0 - 26 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 Snapdragon 7 Gen 5 QRD Snapdragon® 7 Gen 5 Mobile ONNX 3.189 ms 0 - 16 MB CPU Shufflenet-v2.onnx.zip
Shufflenet-v2 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 0.176 ms 0 - 21 MB NPU Shufflenet-v2.tflite
Shufflenet-v2 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 0.207 ms 0 - 21 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 5.646 ms 0 - 169 MB NPU Shufflenet-v2.onnx.zip
Shufflenet-v2 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 0.586 ms 4 - 4 MB NPU Shufflenet-v2.dlc
Shufflenet-v2 w8a8 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 8.011 ms 4 - 4 MB NPU Shufflenet-v2.onnx.zip

Installation

Install the package via pip:

pip install qai-hub-models

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.shufflenet_v2.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.shufflenet_v2.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.shufflenet_v2.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.shufflenet_v2 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.shufflenet_v2.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.shufflenet_v2.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Shufflenet-v2's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Shufflenet-v2 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month
297
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support