Yolo-v7: Optimized for Mobile Deployment
Real-time object detection optimized for mobile and edge
YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image.
This model is an implementation of Yolo-v7 found here.
More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.object_detection
- Model Stats:
- Model checkpoint: YoloV7 Tiny
- Input resolution: 640x640
- Number of parameters: 6.39M
- Model size (float): 24.4 MB
- Model size (w8a8): 6.23 MB
Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Yolo-v7 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 34.818 ms | 1 - 28 MB | NPU | -- |
Yolo-v7 | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 22.973 ms | 1 - 10 MB | NPU | -- |
Yolo-v7 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 20.487 ms | 1 - 45 MB | NPU | -- |
Yolo-v7 | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 13.68 ms | 5 - 44 MB | NPU | -- |
Yolo-v7 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 17.596 ms | 1 - 11 MB | NPU | -- |
Yolo-v7 | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 8.893 ms | 5 - 15 MB | NPU | -- |
Yolo-v7 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 18.776 ms | 1 - 28 MB | NPU | -- |
Yolo-v7 | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 10.545 ms | 1 - 12 MB | NPU | -- |
Yolo-v7 | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 34.818 ms | 1 - 28 MB | NPU | -- |
Yolo-v7 | float | SA7255P ADP | Qualcomm® SA7255P | QNN | 22.973 ms | 1 - 10 MB | NPU | -- |
Yolo-v7 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 17.695 ms | 0 - 56 MB | NPU | -- |
Yolo-v7 | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 8.883 ms | 5 - 7 MB | NPU | -- |
Yolo-v7 | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 22.133 ms | 1 - 32 MB | NPU | -- |
Yolo-v7 | float | SA8295P ADP | Qualcomm® SA8295P | QNN | 13.455 ms | 0 - 17 MB | NPU | -- |
Yolo-v7 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 17.588 ms | 1 - 12 MB | NPU | -- |
Yolo-v7 | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 8.829 ms | 5 - 7 MB | NPU | -- |
Yolo-v7 | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 18.776 ms | 1 - 28 MB | NPU | -- |
Yolo-v7 | float | SA8775P ADP | Qualcomm® SA8775P | QNN | 10.545 ms | 1 - 12 MB | NPU | -- |
Yolo-v7 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 17.48 ms | 1 - 12 MB | NPU | -- |
Yolo-v7 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 8.784 ms | 5 - 108 MB | NPU | -- |
Yolo-v7 | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 11.108 ms | 2 - 39 MB | NPU | -- |
Yolo-v7 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 12.928 ms | 1 - 42 MB | NPU | -- |
Yolo-v7 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 5.839 ms | 181 - 448 MB | NPU | -- |
Yolo-v7 | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 7.781 ms | 7 - 219 MB | NPU | -- |
Yolo-v7 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 12.42 ms | 1 - 32 MB | NPU | -- |
Yolo-v7 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 4.948 ms | 5 - 135 MB | NPU | -- |
Yolo-v7 | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 8.266 ms | 5 - 127 MB | NPU | -- |
Yolo-v7 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 9.467 ms | 5 - 5 MB | NPU | -- |
Yolo-v7 | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 13.019 ms | 9 - 9 MB | NPU | -- |
Yolo-v7 | w8a16 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 18.236 ms | 1 - 11 MB | NPU | -- |
Yolo-v7 | w8a16 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 10.703 ms | 2 - 52 MB | NPU | -- |
Yolo-v7 | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 9.336 ms | 2 - 5 MB | NPU | -- |
Yolo-v7 | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 10.07 ms | 2 - 13 MB | NPU | -- |
Yolo-v7 | w8a16 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 29.712 ms | 2 - 16 MB | NPU | -- |
Yolo-v7 | w8a16 | SA7255P ADP | Qualcomm® SA7255P | QNN | 18.236 ms | 1 - 11 MB | NPU | -- |
Yolo-v7 | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 9.41 ms | 2 - 4 MB | NPU | -- |
Yolo-v7 | w8a16 | SA8295P ADP | Qualcomm® SA8295P | QNN | 12.127 ms | 0 - 16 MB | NPU | -- |
Yolo-v7 | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 9.372 ms | 2 - 5 MB | NPU | -- |
Yolo-v7 | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN | 10.07 ms | 2 - 13 MB | NPU | -- |
Yolo-v7 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 9.372 ms | 2 - 15 MB | NPU | -- |
Yolo-v7 | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 6.057 ms | 0 - 42 MB | NPU | -- |
Yolo-v7 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 6.356 ms | 2 - 50 MB | NPU | -- |
Yolo-v7 | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 4.297 ms | 2 - 216 MB | NPU | -- |
Yolo-v7 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 6.47 ms | 2 - 52 MB | NPU | -- |
Yolo-v7 | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 4.222 ms | 1 - 141 MB | NPU | -- |
Yolo-v7 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 10.046 ms | 2 - 2 MB | NPU | -- |
Yolo-v7 | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 7.015 ms | 5 - 5 MB | NPU | -- |
Yolo-v7 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 4.719 ms | 0 - 23 MB | NPU | -- |
Yolo-v7 | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN | 4.634 ms | 1 - 11 MB | NPU | -- |
Yolo-v7 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 2.679 ms | 0 - 35 MB | NPU | -- |
Yolo-v7 | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN | 2.86 ms | 1 - 42 MB | NPU | -- |
Yolo-v7 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.133 ms | 0 - 35 MB | NPU | -- |
Yolo-v7 | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN | 2.083 ms | 1 - 5 MB | NPU | -- |
Yolo-v7 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 2.523 ms | 0 - 24 MB | NPU | -- |
Yolo-v7 | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN | 2.474 ms | 1 - 14 MB | NPU | -- |
Yolo-v7 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 9.422 ms | 0 - 33 MB | NPU | -- |
Yolo-v7 | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN | 7.535 ms | 1 - 13 MB | NPU | -- |
Yolo-v7 | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 62.819 ms | 15 - 53 MB | GPU | -- |
Yolo-v7 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 4.719 ms | 0 - 23 MB | NPU | -- |
Yolo-v7 | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN | 4.634 ms | 1 - 11 MB | NPU | -- |
Yolo-v7 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.135 ms | 0 - 34 MB | NPU | -- |
Yolo-v7 | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN | 2.081 ms | 1 - 5 MB | NPU | -- |
Yolo-v7 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 3.45 ms | 0 - 24 MB | NPU | -- |
Yolo-v7 | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN | 3.463 ms | 1 - 18 MB | NPU | -- |
Yolo-v7 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.15 ms | 0 - 36 MB | NPU | -- |
Yolo-v7 | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN | 2.081 ms | 1 - 3 MB | NPU | -- |
Yolo-v7 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 2.523 ms | 0 - 24 MB | NPU | -- |
Yolo-v7 | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN | 2.474 ms | 1 - 14 MB | NPU | -- |
Yolo-v7 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.138 ms | 0 - 35 MB | NPU | -- |
Yolo-v7 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN | 2.094 ms | 1 - 11 MB | NPU | -- |
Yolo-v7 | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 4.008 ms | 0 - 60 MB | NPU | -- |
Yolo-v7 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.422 ms | 0 - 45 MB | NPU | -- |
Yolo-v7 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN | 1.406 ms | 1 - 42 MB | NPU | -- |
Yolo-v7 | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.743 ms | 0 - 252 MB | NPU | -- |
Yolo-v7 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.371 ms | 0 - 24 MB | NPU | -- |
Yolo-v7 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN | 1.126 ms | 1 - 33 MB | NPU | -- |
Yolo-v7 | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 2.734 ms | 1 - 138 MB | NPU | -- |
Yolo-v7 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.35 ms | 1 - 1 MB | NPU | -- |
Yolo-v7 | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 4.23 ms | 6 - 6 MB | NPU | -- |
License
- The license for the original implementation of Yolo-v7 can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support