LEGAL-EMBEDDING
LEGAL-EMBEDDING is a Vietnamese text embedding focused on RAG and production efficiency:
📚 Trained Dataset:
The model was trained on an in-house dataset consisting of approximately 80,000 examples of legal questions and their related contexts.
🪆 Efficiency:
Trained with a Matryoshka loss, allowing embeddings to be truncated with minimal performance loss. This ensures that smaller embeddings are faster to compare, making the model efficient for real-world production use.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: bkai-foundation-models/vietnamese-bi-encoder
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: vietnamese
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
import torch
# Download from the 🤗 Hub
model = SentenceTransformer("quanghuy123/LEGAL_EMBEDDING")
# Define query (câu hỏi pháp luật) và docs (điều luật)
query = "Điều kiện để kết hôn hợp pháp là gì?"
docs = [
"Điều 8 Bộ luật Dân sự 2015 quy định về quyền và nghĩa vụ của công dân trong quan hệ gia đình.",
"Điều 18 Luật Hôn nhân và gia đình 2014 quy định về độ tuổi kết hôn của nam và nữ.",
"Điều 14 Bộ luật Dân sự 2015 quy định về quyền và nghĩa vụ của cá nhân khi tham gia hợp đồng.",
"Điều 27 Luật Hôn nhân và gia đình 2014 quy định về các trường hợp không được kết hôn.",
"Điều 51 Luật Hôn nhân và gia đình 2014 quy định về việc kết hôn giữa công dân Việt Nam và người nước ngoài."
]
# Encode query and documents
query_embedding = model.encode([query])
doc_embeddings = model.encode(docs)
similarities = torch.nn.functional.cosine_similarity(
torch.tensor(query_embedding), torch.tensor(doc_embeddings)
).flatten()
# Sort documents by cosine similarity
sorted_indices = torch.argsort(similarities, descending=True)
sorted_docs = [docs[idx] for idx in sorted_indices]
sorted_scores = [similarities[idx].item() for idx in sorted_indices]
# Print sorted documents with their cosine scores
for doc, score in zip(sorted_docs, sorted_scores):
print(f"Document: {doc} - Cosine Similarity: {score:.4f}")
Evaluation
Metrics
Information Retrieval
- Datasets: quanghuy123/LEGAL-EVAL-Dataset
- Evaluated with
InformationRetrievalEvaluator
Model | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
vietnamese-bi-encoder | 0.4645 | 0.4628 | 0.4494 | 0.4233 | 0.3744 |
sup-SimCSE-VietNamese-phobert-base | 0.4033 | 0.3902 | 0.3835 | 0.3785 | 0.3695 |
hiieu/halong_embedding | 0.6242 | 0.6134 | 0.5983 | 0.5878 | 0.5762 |
quanghuy123/LEGAL_EMBEDDING | 0.8112 | 0.8074 | 0.8022 | 0.7937 | 0.7718 |
Citation
You can cite our work as below:
@misc{LEGAL_EMBEDDING,
title={LEGAL_EMBEDDING: A Vietnamese Text Embedding},
author={QUANG HUY},
year={2025},
publisher={Huggingface},
}
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for quanghuy123/LEGAL_EMBEDDING
Base model
bkai-foundation-models/vietnamese-bi-encoderEvaluation results
- Cosine Accuracy@1 on dim 768self-reported0.586
- Cosine Accuracy@3 on dim 768self-reported0.703
- Cosine Accuracy@5 on dim 768self-reported0.750
- Cosine Accuracy@10 on dim 768self-reported0.811
- Cosine Precision@1 on dim 768self-reported0.586
- Cosine Precision@3 on dim 768self-reported0.234
- Cosine Precision@5 on dim 768self-reported0.150
- Cosine Precision@10 on dim 768self-reported0.081
- Cosine Recall@1 on dim 768self-reported0.586
- Cosine Recall@3 on dim 768self-reported0.703