A Wan 2.2 14B i2v LoRA for emulating the City the Animation movement style.
Note:
- I expected the training run to produce a high and a low noise .safetensors, but it did not, so I tried it as just the high-noise LoRA, and it worked fine that way.
- The dataset focuses on action scenes
- the dataset was captioned by a custom-written video captioning tool
Trained using musubi-trainer with the following settings for Wan 2.2 i2v
accelerate launch --num_cpu_threads_per_process 1 --mixed_precision bf16 src/musubi_tuner/wan_train_network.py \
--task i2v-A14B \
--dit_high_noise /home/anon/Documents/ComfyUI/models/diffusion_models/wan2.2/wan2.2_i2v_high_noise_14B_fp16.safetensors \
--dit /home/anon/Documents/ComfyUI/models/diffusion_models/wan2.2/wan2.2_i2v_low_noise_14B_fp16.safetensors \
--dataset_config /home/anon/Documents/musubi-tuner/data/city-video-cfg/city-video-dataset.toml --sdpa --mixed_precision fp16 --fp8_base \
--optimizer_type adamw8bit --learning_rate 2e-4 --gradient_checkpointing --gradient_accumulation_steps 1 \
--max_data_loader_n_workers 2 --persistent_data_loader_workers --offload_inactive_dit \
--network_module networks.lora_wan --network_dim 32 \
--timestep_sampling shift --timestep_boundary 900 --min_timestep 0 --max_timestep 1000 --discrete_flow_shift 3.0 \
--max_train_epochs 16 --save_every_n_epochs 1 --seed 23571113 \
--save_state \
--output_dir /home/anon/Documents/musubi-tuner/data/city-video-output/ --output_name wan2.2-14b-i2v-city.safetensors \
--logging_dir /home/anon/Documents/musubi-tuner/data/city-video-logs
using a dataset consisting of 101 640x360 15-second videos plus annotations. The LoRA took 5.5 days using a 4090D 48GB GPU. I wanted to train at 836x480 but it would always OOM before completing an epoch, so I scaled the video down to 640x360, which is still a common SD resolution.
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for quarterturn/wan2.2-14b-i2v-city-the-animation
Base model
Wan-AI/Wan2.2-I2V-A14B