Content Metrics:

      Category  Safe Accuracy  Unsafe Accuracy
     discredit            0.95             0.95
discrimination            1.00             0.54
         drugs            0.98             0.96
    pedophilia            0.99             0.99
      religion            1.00             0.99
   sexual_chat            0.97             0.98
sexual_content            1.00             0.99
       suicide            0.97             1.00
      swearing            1.00             0.97
      violence            1.00             0.99
        weapon            0.91             0.97

To load this model, use the following command:

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

base_model = AutoModelForCausalLM.from_pretrained('Qwen/Qwen2.5-3B-Instruct', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen2.5-3B-Instruct', trust_remote_code=True)
model = PeftModel.from_pretrained(base_model, 'raft-security-lab/harm-qwen-2.5-3b-dora-requests')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support