CrossEncoder based on jhu-clsp/ettin-encoder-150m

This is a Cross Encoder model finetuned from jhu-clsp/ettin-encoder-150m on the ms_marco dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

Model Details

Model Description

  • Model Type: Cross Encoder
  • Base model: jhu-clsp/ettin-encoder-150m
  • Maximum Sequence Length: 7999 tokens
  • Number of Output Labels: 1 label
  • Training Dataset:
  • Language: en

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-150m-listnet")
# Get scores for pairs of texts
pairs = [
    ['how to transfer credit etisalat', 'Transferring credit from your mobile to another mobile is easy and quick. You can now transfer credit in 2 ways—Normal Credit Transfer and the Secure Credit Transfer. To transfer credit with Normal Credit Transfer, simply type: *100*Mobile Number*Amount to be transferred# then press SEND. E.g.: If you wish to send AED 5, simply type *100*05XXXXXXXX*5# then press SEND. Secure Credit Transfer Method. 5% of the transferred amount will be deducted from the sender as a transaction fee. Example: If Mobile A transferred AED 100 to Mobile B, then AED 105 (AED 100 + AED 5 = [100*5%]) will be deducted from Mobile A and Mobile B will receive AED 100.'],
    ['how to transfer credit etisalat', 'How to transfer credit on Etisalat Nigeria SIM Card. You can electronically transfer airtime from the existing credit in your Etisalat prepaid account to another Etisalat prepaid account. You can transfer any amount. MSISDN = The Etisalat number you want to transfer airtime to. Etisalat Nigeria notifies the sender and receiver about the transaction via USSD and SMS message. In case you forget your password or the SIM is locked due to entry of wrong password several times, just call Etisalat customer care.'],
    ['how to transfer credit etisalat', "Type in the number to which you want to transfer credit. Make sure the number is in the international format -- it should start with a +, followed by the two-digit country code and then the cell phone number without the first zero. Send the SMS to 1700 and wait for a message telling you how to proceed. 1 This is deducted from the sender's account. 2  You can only transfer credit from and into an active account. 3  You can only make three international credit transfers a week and a maximum of 10 per month. 4  Credit limits are set at 300 AED per transfer to a maximum of 500 AED a month."],
    ['how to transfer credit etisalat', "If you have an Etisalat prepaid or postpaid cell phone, you can transfer credit from your account to other network users. You can send credit in United Arab Emirates dirhams or in other currencies if you use the international transfer service. 1 This is deducted from the sender's account. 2  You can only transfer credit from and into an active account. 3  You can only make three international credit transfers a week and a maximum of 10 per month. 4  Credit limits are set at 300 AED per transfer to a maximum of 500 AED a month."],
    ['how to transfer credit etisalat', "Published. Etisalat has launched the ‘International Credit Transfer' facilitating its ‘Wasel’ and ‘Ahlan’ prepaid customers to transfer airtime to any prepaid account globally. Etisalat customers currently are able to transfer balance between local mobile accounts. "],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'how to transfer credit etisalat',
    [
        'Transferring credit from your mobile to another mobile is easy and quick. You can now transfer credit in 2 ways—Normal Credit Transfer and the Secure Credit Transfer. To transfer credit with Normal Credit Transfer, simply type: *100*Mobile Number*Amount to be transferred# then press SEND. E.g.: If you wish to send AED 5, simply type *100*05XXXXXXXX*5# then press SEND. Secure Credit Transfer Method. 5% of the transferred amount will be deducted from the sender as a transaction fee. Example: If Mobile A transferred AED 100 to Mobile B, then AED 105 (AED 100 + AED 5 = [100*5%]) will be deducted from Mobile A and Mobile B will receive AED 100.',
        'How to transfer credit on Etisalat Nigeria SIM Card. You can electronically transfer airtime from the existing credit in your Etisalat prepaid account to another Etisalat prepaid account. You can transfer any amount. MSISDN = The Etisalat number you want to transfer airtime to. Etisalat Nigeria notifies the sender and receiver about the transaction via USSD and SMS message. In case you forget your password or the SIM is locked due to entry of wrong password several times, just call Etisalat customer care.',
        "Type in the number to which you want to transfer credit. Make sure the number is in the international format -- it should start with a +, followed by the two-digit country code and then the cell phone number without the first zero. Send the SMS to 1700 and wait for a message telling you how to proceed. 1 This is deducted from the sender's account. 2  You can only transfer credit from and into an active account. 3  You can only make three international credit transfers a week and a maximum of 10 per month. 4  Credit limits are set at 300 AED per transfer to a maximum of 500 AED a month.",
        "If you have an Etisalat prepaid or postpaid cell phone, you can transfer credit from your account to other network users. You can send credit in United Arab Emirates dirhams or in other currencies if you use the international transfer service. 1 This is deducted from the sender's account. 2  You can only transfer credit from and into an active account. 3  You can only make three international credit transfers a week and a maximum of 10 per month. 4  Credit limits are set at 300 AED per transfer to a maximum of 500 AED a month.",
        "Published. Etisalat has launched the ‘International Credit Transfer' facilitating its ‘Wasel’ and ‘Ahlan’ prepaid customers to transfer airtime to any prepaid account globally. Etisalat customers currently are able to transfer balance between local mobile accounts. ",
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]

Evaluation

Metrics

Cross Encoder Reranking

  • Datasets: NanoMSMARCO_R100, NanoNFCorpus_R100 and NanoNQ_R100
  • Evaluated with CrossEncoderRerankingEvaluator with these parameters:
    {
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric NanoMSMARCO_R100 NanoNFCorpus_R100 NanoNQ_R100
map 0.5325 (+0.0429) 0.3438 (+0.0828) 0.5945 (+0.1749)
mrr@10 0.5238 (+0.0463) 0.5468 (+0.0470) 0.6074 (+0.1807)
ndcg@10 0.5898 (+0.0494) 0.3760 (+0.0510) 0.6450 (+0.1443)

Cross Encoder Nano BEIR

  • Dataset: NanoBEIR_R100_mean
  • Evaluated with CrossEncoderNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ],
        "rerank_k": 100,
        "at_k": 10,
        "always_rerank_positives": true
    }
    
Metric Value
map 0.4903 (+0.1002)
mrr@10 0.5593 (+0.0913)
ndcg@10 0.5369 (+0.0816)

Training Details

Training Dataset

ms_marco

  • Dataset: ms_marco at a47ee7a
  • Size: 78,704 training samples
  • Columns: query, docs, and labels
  • Approximate statistics based on the first 1000 samples:
    query docs labels
    type string list list
    details
    • min: 10 characters
    • mean: 34.47 characters
    • max: 101 characters
    • min: 3 elements
    • mean: 6.50 elements
    • max: 10 elements
    • min: 3 elements
    • mean: 6.50 elements
    • max: 10 elements
  • Samples:
    query docs labels
    is sugar made from beets ['How Beet Sugar is Made-the Basic Story. White beet sugar is made from the beets in a single process, rather than the two steps involved with cane sugar. Because the beets have come from the ground they are much dirtier than sugar cane and have to be thoroughly washed and separated from any remaining beet leaves, stones and other trash material before processing. Extraction. The processing starts by slicing the beets into thin chips.', 'The bigger discrepancy seems to be with brown sugar made from beets. Brown sugar made from beet sugar has molasses added to the refined white sugar. The molasses byproduct from beet sugar production is sold as an addition to animal feed and not used in food for human consumption. With cane sugar the brown sugar may be a less refined product as it a step in the production process. Sugar beets are grown commercially in twelve states, as a summer crop in northern states like Michigan and Minnesota and as a winter crop in warmer climates like California. S... [1, 0, 0, 0, 0, ...]
    what gases are good insulators ['Gases with electronegative species (i.e. halogens such as chlorine) make good insulators, hence the popularity of SF6, which is not only dense (breakdown voltage is roughly proportional to density) but is mostly Fluorine, a highly electronegative element. Sulfur Hexafluoride (SF6) - Sulfur Hexafluoride is probably the most popular insulating gas, although its cost has risen dramatically recently. Hydrogen-Hydrogen gas is not a particularly good insulator (65% of air) from a breakdown voltage standpoint. Its very low viscosity and high thermal capacity make it an insulating gas of choice for high speed, high voltage machinery such as turbogenerators', 'Conductors and Insulators. In a conductor, electric current can flow freely, in an insulator it cannot. Metals such as copper typify conductors, while most non-metallic solids are said to be good insulators, having extremely high resistance to the flow of charge through them. Conductor implies that the outer electrons of the atoms are l... [1, 0, 0, 0, 0, ...]
    concrete pouring cost ['Needless to say, installing and/or making concrete is a job better left to the pros, but if you are up for a DIY challenge, you will certainly save some dough. According to our concrete slab material estimator, the average minimum cost per square foot of a concrete slab is $1.36 and the maximum is $1.88. By comparison, the price per square foot for a cement slab is $5.50. Just know that even if you do not hire a pro, there are additional costs that come with all concrete slab projects. Supplies, such as the wood used to shape the concrete, can add $3.75 per square foot.', "Basic concrete slab cost. I'll base my price on what my actual estimate would be to install a 6 thick concrete slab for one of my customers. Base cost for a 6 thick concrete slab -- $4.00 dollars per square foot --. Take the length of the concrete slab x the width of the slab to get the. total square footage. Multiply the total square footage by 4 (dollars) to get the total price.", 'Labor. The cost to pour a concrete pad takes a big jump if you hire the pros, who charge per hour, per worker. If forming and pouring your pad takes three workers two days to complete at a cost of $30 per worker hour, it could add around $1,400 to your bill.', 'Video on the cost of concrete floors. Depending on the level of complexity, concrete floors can cost as little as $2 to $6 a square foot or be as expensive as $15 to $30 a square foot.'] [1, 0, 0, 0]
  • Loss: ListNetLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "mini_batch_size": 16
    }
    

Evaluation Dataset

ms_marco

  • Dataset: ms_marco at a47ee7a
  • Size: 1,000 evaluation samples
  • Columns: query, docs, and labels
  • Approximate statistics based on the first 1000 samples:
    query docs labels
    type string list list
    details
    • min: 10 characters
    • mean: 33.89 characters
    • max: 101 characters
    • min: 2 elements
    • mean: 6.00 elements
    • max: 10 elements
    • min: 2 elements
    • mean: 6.00 elements
    • max: 10 elements
  • Samples:
    query docs labels
    how to transfer credit etisalat ['Transferring credit from your mobile to another mobile is easy and quick. You can now transfer credit in 2 ways—Normal Credit Transfer and the Secure Credit Transfer. To transfer credit with Normal Credit Transfer, simply type: 100Mobile NumberAmount to be transferred# then press SEND. E.g.: If you wish to send AED 5, simply type 10005XXXXXXXX5# then press SEND. Secure Credit Transfer Method. 5% of the transferred amount will be deducted from the sender as a transaction fee. Example: If Mobile A transferred AED 100 to Mobile B, then AED 105 (AED 100 + AED 5 = [100*5%]) will be deducted from Mobile A and Mobile B will receive AED 100.', 'How to transfer credit on Etisalat Nigeria SIM Card. You can electronically transfer airtime from the existing credit in your Etisalat prepaid account to another Etisalat prepaid account. You can transfer any amount. MSISDN = The Etisalat number you want to transfer airtime to. Etisalat Nigeria notifies the sender and receiver about the transact... [1, 0, 0, 0, 0, ...]
    what is the transport system of the cell ["Simple definition of a transport system in biology: A transport system is a means by which materials are moved (' transported ') from an exchange surface or exchange surface. to cells* located throughout the organism. * Not all individual cells require all of the many different types of materials carried by a transport system.", 'In cellular biology, membrane transport refers to the collection of mechanisms that regulate the passage of solutes such as ions and small molecules through biological membranes, which are lipid bilayers that contain proteins embedded in them. ', 'Transport system in plant. Transport system in plant consists of tubes (vessels) of cells, adapted to perform the function of transport, so it is known as vascular system. There are two types of vessels in the plant 1. Xylem: transport water and mineral from roots to leaves. 2.', 'The transport system of the cell between the nucleus and the cytoplam is the endoplasmic rectiulum which is a complex system of membrane... [1, 0, 0, 0, 0, ...]
    who coined the term hegemonic ['As a sociologic concept, the hegemonic nature of hegemonic masculinity derives from the theory of cultural hegemony, by Marxist theorist Antonio Gramsci, which analyzes the power relations among the social classes of a society. For example, Laurie argues that the hegemonic masculinity framework lends itself to a modified essentialism, wherein the achievement of masculine goals is frequently attributed to a way of thinking understood as inherent to the male psyche, and in relation to an innate disposition for homosocial bonding.', 'According to Nick Trujillo, author of “Hegemonic Masculinity on the Mound,” in which he analyzes the concept within the American sports culture, there are five particular dimensions. That the stereotypical male exercise physical force and control is first and foremost. ', 'Also, it could be used for the geopolitical and the cultural predominance of one country over others; from which was derived hegemonism, as in the idea that the Great Powers meant to esta... [1, 0, 0, 0, 0, ...]
  • Loss: ListNetLoss with these parameters:
    {
        "activation_fn": "torch.nn.modules.linear.Identity",
        "mini_batch_size": 16
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • seed: 12
  • bf16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss NanoMSMARCO_R100_ndcg@10 NanoNFCorpus_R100_ndcg@10 NanoNQ_R100_ndcg@10 NanoBEIR_R100_mean_ndcg@10
-1 -1 - - 0.0509 (-0.4895) 0.2468 (-0.0783) 0.0195 (-0.4811) 0.1057 (-0.3496)
0.0002 1 2.0621 - - - - -
0.0203 100 2.0831 2.0928 0.0270 (-0.5134) 0.2415 (-0.0835) 0.0767 (-0.4240) 0.1151 (-0.3403)
0.0407 200 2.0877 2.0909 0.0732 (-0.4673) 0.3028 (-0.0222) 0.1484 (-0.3522) 0.1748 (-0.2806)
0.0610 300 2.0823 2.0950 0.0456 (-0.4948) 0.2933 (-0.0318) 0.0394 (-0.4613) 0.1261 (-0.3293)
0.0813 400 2.0825 2.0948 0.0309 (-0.5095) 0.2526 (-0.0725) 0.0520 (-0.4486) 0.1118 (-0.3435)
0.1016 500 2.0877 2.0929 0.0507 (-0.4898) 0.3317 (+0.0067) 0.0590 (-0.4416) 0.1471 (-0.3082)
0.1220 600 2.0901 2.0915 0.1175 (-0.4229) 0.2624 (-0.0626) 0.0677 (-0.4329) 0.1492 (-0.3062)
0.1423 700 2.0775 2.0909 0.0970 (-0.4434) 0.2908 (-0.0343) 0.0585 (-0.4421) 0.1488 (-0.3066)
0.1626 800 2.0828 2.0904 0.1654 (-0.3751) 0.3020 (-0.0231) 0.1146 (-0.3860) 0.1940 (-0.2614)
0.1830 900 2.0773 2.0906 0.1242 (-0.4162) 0.2828 (-0.0422) 0.0940 (-0.4067) 0.1670 (-0.2884)
0.2033 1000 2.0746 2.0858 0.4331 (-0.1073) 0.3011 (-0.0239) 0.4507 (-0.0500) 0.3950 (-0.0604)
0.2236 1100 2.0764 2.0839 0.4451 (-0.0953) 0.3484 (+0.0234) 0.4370 (-0.0637) 0.4102 (-0.0452)
0.2440 1200 2.087 2.0822 0.4766 (-0.0638) 0.3698 (+0.0448) 0.4646 (-0.0361) 0.4370 (-0.0184)
0.2643 1300 2.074 2.0813 0.5038 (-0.0366) 0.3605 (+0.0355) 0.4657 (-0.0350) 0.4433 (-0.0120)
0.2846 1400 2.0768 2.0803 0.5417 (+0.0013) 0.3748 (+0.0498) 0.5447 (+0.0441) 0.4871 (+0.0317)
0.3049 1500 2.0749 2.0798 0.5016 (-0.0389) 0.3661 (+0.0411) 0.5801 (+0.0795) 0.4826 (+0.0272)
0.3253 1600 2.0803 2.0812 0.5325 (-0.0080) 0.3759 (+0.0508) 0.5822 (+0.0816) 0.4969 (+0.0415)
0.3456 1700 2.0759 2.0792 0.5462 (+0.0058) 0.3803 (+0.0552) 0.5532 (+0.0525) 0.4932 (+0.0379)
0.3659 1800 2.0795 2.0787 0.5299 (-0.0106) 0.3691 (+0.0441) 0.5743 (+0.0737) 0.4911 (+0.0357)
0.3863 1900 2.0651 2.0788 0.5356 (-0.0048) 0.3583 (+0.0332) 0.5916 (+0.0909) 0.4952 (+0.0398)
0.4066 2000 2.0719 2.0785 0.5719 (+0.0315) 0.3887 (+0.0637) 0.5866 (+0.0860) 0.5158 (+0.0604)
0.4269 2100 2.07 2.0784 0.5549 (+0.0145) 0.3516 (+0.0266) 0.6274 (+0.1267) 0.5113 (+0.0559)
0.4472 2200 2.0662 2.0778 0.5629 (+0.0224) 0.3750 (+0.0500) 0.5731 (+0.0724) 0.5036 (+0.0483)
0.4676 2300 2.0695 2.0774 0.5723 (+0.0319) 0.3479 (+0.0228) 0.6157 (+0.1150) 0.5120 (+0.0566)
0.4879 2400 2.0736 2.0777 0.5560 (+0.0155) 0.3711 (+0.0460) 0.6402 (+0.1395) 0.5224 (+0.0670)
0.5082 2500 2.0617 2.0776 0.5274 (-0.0130) 0.3585 (+0.0334) 0.6576 (+0.1570) 0.5145 (+0.0591)
0.5286 2600 2.0807 2.0770 0.5362 (-0.0043) 0.3706 (+0.0456) 0.6021 (+0.1014) 0.5029 (+0.0476)
0.5489 2700 2.0716 2.0772 0.5514 (+0.0110) 0.3849 (+0.0599) 0.6472 (+0.1466) 0.5278 (+0.0725)
0.5692 2800 2.0691 2.0767 0.5551 (+0.0146) 0.3593 (+0.0343) 0.6073 (+0.1066) 0.5072 (+0.0519)
0.5896 2900 2.0646 2.0770 0.5402 (-0.0003) 0.3882 (+0.0632) 0.5872 (+0.0865) 0.5052 (+0.0498)
0.6099 3000 2.0846 2.0777 0.5278 (-0.0126) 0.3600 (+0.0350) 0.5853 (+0.0847) 0.4911 (+0.0357)
0.6302 3100 2.0765 2.0768 0.5534 (+0.0130) 0.3734 (+0.0483) 0.6369 (+0.1363) 0.5212 (+0.0659)
0.6505 3200 2.0629 2.0767 0.5713 (+0.0309) 0.3623 (+0.0373) 0.6483 (+0.1476) 0.5273 (+0.0719)
0.6709 3300 2.0757 2.0764 0.5898 (+0.0494) 0.3760 (+0.0510) 0.6450 (+0.1443) 0.5369 (+0.0816)
0.6912 3400 2.0741 2.0765 0.5639 (+0.0234) 0.3866 (+0.0616) 0.6271 (+0.1265) 0.5259 (+0.0705)
0.7115 3500 2.0736 2.0766 0.5541 (+0.0136) 0.3833 (+0.0583) 0.6304 (+0.1298) 0.5226 (+0.0672)
0.7319 3600 2.0748 2.0763 0.5242 (-0.0163) 0.3648 (+0.0398) 0.6560 (+0.1554) 0.5150 (+0.0596)
0.7522 3700 2.0725 2.0762 0.5475 (+0.0071) 0.3561 (+0.0311) 0.5939 (+0.0933) 0.4992 (+0.0438)
0.7725 3800 2.0684 2.0761 0.5480 (+0.0076) 0.3637 (+0.0387) 0.6472 (+0.1466) 0.5196 (+0.0643)
0.7928 3900 2.0702 2.0762 0.6007 (+0.0603) 0.3442 (+0.0192) 0.6246 (+0.1240) 0.5232 (+0.0678)
0.8132 4000 2.0709 2.0767 0.5732 (+0.0327) 0.3369 (+0.0119) 0.6343 (+0.1337) 0.5148 (+0.0594)
0.8335 4100 2.0791 2.0762 0.5756 (+0.0352) 0.3397 (+0.0146) 0.6232 (+0.1226) 0.5128 (+0.0575)
0.8538 4200 2.0759 2.0760 0.5940 (+0.0536) 0.3549 (+0.0299) 0.6199 (+0.1192) 0.5230 (+0.0676)
0.8742 4300 2.0731 2.0760 0.5708 (+0.0304) 0.3610 (+0.0360) 0.6179 (+0.1173) 0.5166 (+0.0612)
0.8945 4400 2.0643 2.0757 0.5602 (+0.0198) 0.3647 (+0.0397) 0.5874 (+0.0867) 0.5041 (+0.0487)
0.9148 4500 2.0743 2.0761 0.5783 (+0.0379) 0.3556 (+0.0306) 0.6362 (+0.1356) 0.5234 (+0.0680)
0.9351 4600 2.0636 2.0758 0.5646 (+0.0241) 0.3447 (+0.0197) 0.6049 (+0.1043) 0.5047 (+0.0494)
0.9555 4700 2.0778 2.0761 0.5727 (+0.0322) 0.3384 (+0.0134) 0.6178 (+0.1171) 0.5096 (+0.0543)
0.9758 4800 2.074 2.0758 0.5670 (+0.0266) 0.3557 (+0.0307) 0.6099 (+0.1093) 0.5109 (+0.0555)
0.9961 4900 2.07 2.0759 0.5468 (+0.0063) 0.3647 (+0.0396) 0.6388 (+0.1381) 0.5167 (+0.0614)
1.0165 5000 2.0614 2.0759 0.5481 (+0.0077) 0.3526 (+0.0276) 0.6461 (+0.1455) 0.5156 (+0.0603)
1.0368 5100 2.0643 2.0759 0.5600 (+0.0196) 0.3524 (+0.0274) 0.6085 (+0.1079) 0.5070 (+0.0516)
1.0571 5200 2.0672 2.0760 0.5733 (+0.0329) 0.3545 (+0.0294) 0.6061 (+0.1055) 0.5113 (+0.0559)
1.0775 5300 2.0667 2.0759 0.5722 (+0.0318) 0.3567 (+0.0316) 0.6351 (+0.1344) 0.5213 (+0.0660)
1.0978 5400 2.0701 2.0762 0.5501 (+0.0097) 0.3713 (+0.0462) 0.6411 (+0.1405) 0.5208 (+0.0655)
1.1181 5500 2.0648 2.0765 0.5462 (+0.0058) 0.3733 (+0.0483) 0.6208 (+0.1202) 0.5134 (+0.0581)
1.1384 5600 2.0614 2.0759 0.5509 (+0.0105) 0.3903 (+0.0653) 0.5935 (+0.0928) 0.5116 (+0.0562)
1.1588 5700 2.0655 2.0764 0.5464 (+0.0060) 0.3676 (+0.0426) 0.5730 (+0.0724) 0.4957 (+0.0403)
1.1791 5800 2.0733 2.0761 0.5607 (+0.0203) 0.3465 (+0.0214) 0.6030 (+0.1024) 0.5034 (+0.0480)
1.1994 5900 2.0674 2.0765 0.5272 (-0.0133) 0.3640 (+0.0390) 0.5542 (+0.0536) 0.4818 (+0.0264)
1.2198 6000 2.0737 2.0761 0.5599 (+0.0194) 0.3498 (+0.0247) 0.5943 (+0.0936) 0.5013 (+0.0459)
1.2401 6100 2.0618 2.0763 0.5579 (+0.0174) 0.3633 (+0.0382) 0.5856 (+0.0850) 0.5022 (+0.0469)
1.2604 6200 2.0621 2.0762 0.5879 (+0.0475) 0.3771 (+0.0521) 0.6114 (+0.1108) 0.5255 (+0.0701)
1.2807 6300 2.0803 2.0760 0.5521 (+0.0117) 0.3513 (+0.0263) 0.6230 (+0.1223) 0.5088 (+0.0534)
1.3011 6400 2.059 2.0759 0.5739 (+0.0335) 0.3582 (+0.0331) 0.6165 (+0.1159) 0.5162 (+0.0608)
1.3214 6500 2.0708 2.0759 0.5218 (-0.0186) 0.3348 (+0.0098) 0.6288 (+0.1281) 0.4951 (+0.0398)
1.3417 6600 2.0584 2.0761 0.5522 (+0.0118) 0.3656 (+0.0405) 0.6456 (+0.1449) 0.5211 (+0.0657)
1.3621 6700 2.0581 2.0760 0.5326 (-0.0078) 0.3504 (+0.0253) 0.6119 (+0.1112) 0.4983 (+0.0429)
1.3824 6800 2.0618 2.0758 0.5589 (+0.0184) 0.3695 (+0.0445) 0.6101 (+0.1095) 0.5128 (+0.0575)
1.4027 6900 2.0576 2.0765 0.5571 (+0.0167) 0.3624 (+0.0373) 0.6230 (+0.1224) 0.5142 (+0.0588)
1.4231 7000 2.0652 2.0759 0.5354 (-0.0050) 0.3579 (+0.0328) 0.6062 (+0.1056) 0.4998 (+0.0445)
1.4434 7100 2.0646 2.0758 0.5316 (-0.0088) 0.3572 (+0.0321) 0.6205 (+0.1198) 0.5031 (+0.0477)
1.4637 7200 2.0701 2.0758 0.5367 (-0.0037) 0.3679 (+0.0428) 0.6702 (+0.1696) 0.5249 (+0.0696)
1.4840 7300 2.0751 2.0759 0.5430 (+0.0026) 0.3586 (+0.0335) 0.5973 (+0.0967) 0.4996 (+0.0443)
1.5044 7400 2.0661 2.0764 0.5827 (+0.0423) 0.3881 (+0.0631) 0.6341 (+0.1334) 0.5350 (+0.0796)
1.5247 7500 2.0742 2.0757 0.5416 (+0.0012) 0.3907 (+0.0656) 0.5900 (+0.0894) 0.5074 (+0.0521)
1.5450 7600 2.0599 2.0765 0.5336 (-0.0068) 0.3682 (+0.0432) 0.5989 (+0.0983) 0.5002 (+0.0449)
1.5654 7700 2.0719 2.0759 0.5402 (-0.0002) 0.3661 (+0.0411) 0.6070 (+0.1063) 0.5044 (+0.0491)
1.5857 7800 2.0715 2.0756 0.5590 (+0.0186) 0.3612 (+0.0362) 0.6180 (+0.1173) 0.5127 (+0.0574)
1.6060 7900 2.0686 2.0759 0.5665 (+0.0260) 0.3518 (+0.0267) 0.5853 (+0.0846) 0.5012 (+0.0458)
1.6263 8000 2.0597 2.0757 0.5646 (+0.0242) 0.3662 (+0.0412) 0.6050 (+0.1043) 0.5119 (+0.0566)
1.6467 8100 2.072 2.0756 0.5471 (+0.0067) 0.3493 (+0.0243) 0.6150 (+0.1143) 0.5038 (+0.0484)
1.6670 8200 2.0621 2.0755 0.5536 (+0.0132) 0.3415 (+0.0164) 0.6082 (+0.1076) 0.5011 (+0.0457)
1.6873 8300 2.0653 2.0757 0.5585 (+0.0180) 0.3267 (+0.0016) 0.6198 (+0.1192) 0.5016 (+0.0463)
1.7077 8400 2.0679 2.0754 0.5813 (+0.0409) 0.3346 (+0.0095) 0.6197 (+0.1190) 0.5119 (+0.0565)
1.7280 8500 2.0663 2.0759 0.5619 (+0.0215) 0.3482 (+0.0232) 0.6041 (+0.1035) 0.5048 (+0.0494)
1.7483 8600 2.0717 2.0759 0.5663 (+0.0258) 0.3354 (+0.0104) 0.6087 (+0.1080) 0.5035 (+0.0481)
1.7687 8700 2.0584 2.0758 0.5450 (+0.0046) 0.3439 (+0.0188) 0.6328 (+0.1321) 0.5072 (+0.0519)
1.7890 8800 2.0645 2.0756 0.5244 (-0.0160) 0.3479 (+0.0229) 0.6517 (+0.1510) 0.5080 (+0.0526)
1.8093 8900 2.0621 2.0762 0.5394 (-0.0010) 0.3302 (+0.0051) 0.6306 (+0.1299) 0.5001 (+0.0447)
1.8296 9000 2.0634 2.0757 0.5792 (+0.0388) 0.3254 (+0.0004) 0.6016 (+0.1009) 0.5021 (+0.0467)
1.8500 9100 2.0697 2.0758 0.5571 (+0.0167) 0.3307 (+0.0057) 0.6091 (+0.1085) 0.4990 (+0.0436)
1.8703 9200 2.066 2.0756 0.5550 (+0.0145) 0.3467 (+0.0217) 0.6023 (+0.1017) 0.5013 (+0.0460)
1.8906 9300 2.0612 2.0760 0.5541 (+0.0137) 0.3464 (+0.0214) 0.6126 (+0.1120) 0.5044 (+0.0490)
1.9110 9400 2.0678 2.0752 0.5349 (-0.0055) 0.3585 (+0.0335) 0.6248 (+0.1241) 0.5061 (+0.0507)
1.9313 9500 2.0715 2.0756 0.5459 (+0.0054) 0.3613 (+0.0362) 0.6308 (+0.1301) 0.5126 (+0.0573)
1.9516 9600 2.0586 2.0753 0.5346 (-0.0059) 0.3583 (+0.0332) 0.6446 (+0.1439) 0.5125 (+0.0571)
1.9719 9700 2.0573 2.0759 0.5462 (+0.0058) 0.3551 (+0.0301) 0.6515 (+0.1509) 0.5176 (+0.0623)
1.9923 9800 2.0634 2.0753 0.5465 (+0.0061) 0.3644 (+0.0394) 0.6047 (+0.1040) 0.5052 (+0.0498)
2.0126 9900 2.0659 2.0766 0.5366 (-0.0038) 0.3529 (+0.0279) 0.5920 (+0.0914) 0.4938 (+0.0385)
2.0329 10000 2.0514 2.0780 0.5466 (+0.0062) 0.3489 (+0.0239) 0.5667 (+0.0660) 0.4874 (+0.0320)
2.0533 10100 2.0506 2.0782 0.5444 (+0.0040) 0.3564 (+0.0313) 0.5532 (+0.0525) 0.4847 (+0.0293)
2.0736 10200 2.0528 2.0777 0.5340 (-0.0065) 0.3289 (+0.0038) 0.5812 (+0.0805) 0.4813 (+0.0260)
2.0939 10300 2.0552 2.0781 0.5045 (-0.0359) 0.3402 (+0.0152) 0.5500 (+0.0494) 0.4649 (+0.0096)
2.1143 10400 2.0551 2.0798 0.5110 (-0.0294) 0.3490 (+0.0240) 0.5577 (+0.0570) 0.4726 (+0.0172)
2.1346 10500 2.0472 2.0782 0.5238 (-0.0166) 0.3567 (+0.0316) 0.5681 (+0.0674) 0.4829 (+0.0275)
2.1549 10600 2.0568 2.0796 0.5299 (-0.0106) 0.3561 (+0.0311) 0.5770 (+0.0763) 0.4876 (+0.0323)
2.1752 10700 2.059 2.0794 0.5300 (-0.0105) 0.3435 (+0.0184) 0.5440 (+0.0434) 0.4725 (+0.0171)
2.1956 10800 2.0608 2.0783 0.5444 (+0.0040) 0.3497 (+0.0246) 0.5827 (+0.0820) 0.4923 (+0.0369)
2.2159 10900 2.0544 2.0792 0.5239 (-0.0165) 0.3334 (+0.0083) 0.5381 (+0.0374) 0.4651 (+0.0097)
2.2362 11000 2.0581 2.0784 0.5227 (-0.0177) 0.3410 (+0.0159) 0.5669 (+0.0662) 0.4769 (+0.0215)
2.2566 11100 2.0503 2.0798 0.4970 (-0.0435) 0.3363 (+0.0112) 0.5674 (+0.0667) 0.4669 (+0.0115)
2.2769 11200 2.0587 2.0783 0.5088 (-0.0317) 0.3405 (+0.0155) 0.5607 (+0.0601) 0.4700 (+0.0146)
2.2972 11300 2.058 2.0805 0.4763 (-0.0641) 0.3391 (+0.0140) 0.5457 (+0.0451) 0.4537 (-0.0017)
2.3175 11400 2.0481 2.0803 0.4811 (-0.0593) 0.3442 (+0.0192) 0.5410 (+0.0403) 0.4554 (+0.0001)
2.3379 11500 2.0507 2.0791 0.5030 (-0.0374) 0.3337 (+0.0086) 0.5680 (+0.0673) 0.4682 (+0.0129)
2.3582 11600 2.055 2.0792 0.4964 (-0.0440) 0.3405 (+0.0154) 0.5717 (+0.0711) 0.4695 (+0.0142)
2.3785 11700 2.0635 2.0815 0.4840 (-0.0564) 0.3492 (+0.0241) 0.5836 (+0.0830) 0.4723 (+0.0169)
2.3989 11800 2.054 2.0793 0.4744 (-0.0660) 0.3428 (+0.0177) 0.5253 (+0.0247) 0.4475 (-0.0079)
2.4192 11900 2.0489 2.0786 0.4984 (-0.0420) 0.3333 (+0.0083) 0.5213 (+0.0207) 0.4510 (-0.0044)
2.4395 12000 2.0592 2.0794 0.4884 (-0.0520) 0.3586 (+0.0336) 0.5415 (+0.0409) 0.4629 (+0.0075)
2.4598 12100 2.0414 2.0808 0.4966 (-0.0438) 0.3583 (+0.0332) 0.5937 (+0.0931) 0.4829 (+0.0275)
2.4802 12200 2.0594 2.0808 0.5062 (-0.0342) 0.3423 (+0.0173) 0.5675 (+0.0669) 0.4720 (+0.0167)
2.5005 12300 2.0473 2.0791 0.5141 (-0.0263) 0.3357 (+0.0106) 0.5754 (+0.0748) 0.4751 (+0.0197)
2.5208 12400 2.0587 2.0797 0.5011 (-0.0393) 0.3528 (+0.0278) 0.6013 (+0.1007) 0.4851 (+0.0297)
2.5412 12500 2.0647 2.0789 0.5021 (-0.0384) 0.3519 (+0.0269) 0.5815 (+0.0809) 0.4785 (+0.0231)
2.5615 12600 2.0436 2.0798 0.5156 (-0.0248) 0.3509 (+0.0259) 0.5845 (+0.0839) 0.4837 (+0.0283)
2.5818 12700 2.0543 2.0796 0.5150 (-0.0255) 0.3541 (+0.0291) 0.5852 (+0.0845) 0.4848 (+0.0294)
2.6022 12800 2.0562 2.0799 0.5079 (-0.0325) 0.3605 (+0.0354) 0.5974 (+0.0967) 0.4886 (+0.0332)
2.6225 12900 2.0609 2.0802 0.5194 (-0.0210) 0.3544 (+0.0293) 0.5770 (+0.0763) 0.4836 (+0.0282)
2.6428 13000 2.0493 2.0810 0.5179 (-0.0225) 0.3536 (+0.0285) 0.5621 (+0.0614) 0.4778 (+0.0225)
2.6631 13100 2.0497 2.0806 0.5102 (-0.0302) 0.3561 (+0.0311) 0.5521 (+0.0515) 0.4728 (+0.0175)
2.6835 13200 2.048 2.0789 0.5208 (-0.0196) 0.3557 (+0.0307) 0.5507 (+0.0501) 0.4758 (+0.0204)
2.7038 13300 2.0496 2.0788 0.4947 (-0.0458) 0.3525 (+0.0274) 0.5395 (+0.0388) 0.4622 (+0.0068)
2.7241 13400 2.0595 2.0784 0.4846 (-0.0558) 0.3533 (+0.0283) 0.5264 (+0.0257) 0.4548 (-0.0006)
2.7445 13500 2.0469 2.0797 0.4873 (-0.0531) 0.3559 (+0.0308) 0.5500 (+0.0494) 0.4644 (+0.0090)
2.7648 13600 2.0502 2.0787 0.4928 (-0.0476) 0.3534 (+0.0284) 0.5608 (+0.0601) 0.4690 (+0.0137)
2.7851 13700 2.062 2.0790 0.4826 (-0.0578) 0.3629 (+0.0378) 0.5539 (+0.0532) 0.4665 (+0.0111)
2.8054 13800 2.0583 2.0796 0.4838 (-0.0566) 0.3714 (+0.0464) 0.5506 (+0.0499) 0.4686 (+0.0132)
2.8258 13900 2.0563 2.0802 0.5056 (-0.0348) 0.3573 (+0.0323) 0.5560 (+0.0554) 0.4730 (+0.0176)
2.8461 14000 2.0624 2.0792 0.5001 (-0.0404) 0.3549 (+0.0299) 0.5459 (+0.0453) 0.4670 (+0.0116)
2.8664 14100 2.0623 2.0790 0.5096 (-0.0309) 0.3741 (+0.0491) 0.5426 (+0.0419) 0.4754 (+0.0200)
2.8868 14200 2.0609 2.0792 0.5122 (-0.0282) 0.3730 (+0.0479) 0.5261 (+0.0255) 0.4704 (+0.0151)
2.9071 14300 2.0522 2.0789 0.5244 (-0.0160) 0.3727 (+0.0476) 0.5549 (+0.0542) 0.4840 (+0.0286)
2.9274 14400 2.0576 2.0790 0.5215 (-0.0189) 0.3668 (+0.0417) 0.5466 (+0.0460) 0.4783 (+0.0229)
2.9478 14500 2.0489 2.0797 0.5195 (-0.0209) 0.3699 (+0.0448) 0.5520 (+0.0513) 0.4805 (+0.0251)
2.9681 14600 2.0421 2.0788 0.5184 (-0.0221) 0.3740 (+0.0490) 0.5494 (+0.0487) 0.4806 (+0.0252)
2.9884 14700 2.0523 2.0795 0.5034 (-0.0371) 0.3734 (+0.0483) 0.5535 (+0.0528) 0.4767 (+0.0214)
3.0087 14800 2.0386 2.0816 0.5120 (-0.0284) 0.3784 (+0.0534) 0.5241 (+0.0234) 0.4715 (+0.0161)
3.0291 14900 2.0298 2.0850 0.4934 (-0.0471) 0.3687 (+0.0437) 0.5259 (+0.0253) 0.4627 (+0.0073)
3.0494 15000 2.0421 2.0843 0.4711 (-0.0694) 0.3680 (+0.0429) 0.5447 (+0.0440) 0.4612 (+0.0059)
3.0697 15100 2.0404 2.0851 0.4817 (-0.0587) 0.3647 (+0.0396) 0.5243 (+0.0237) 0.4569 (+0.0015)
3.0901 15200 2.0281 2.0855 0.4825 (-0.0579) 0.3517 (+0.0266) 0.4892 (-0.0114) 0.4411 (-0.0142)
3.1104 15300 2.0219 2.0865 0.4477 (-0.0928) 0.3636 (+0.0386) 0.5097 (+0.0090) 0.4403 (-0.0150)
3.1307 15400 2.0449 2.0858 0.4554 (-0.0850) 0.3534 (+0.0283) 0.5038 (+0.0031) 0.4375 (-0.0179)
3.1510 15500 2.0337 2.0863 0.4450 (-0.0954) 0.3547 (+0.0296) 0.5142 (+0.0135) 0.4380 (-0.0174)
3.1714 15600 2.0401 2.0867 0.4525 (-0.0879) 0.3525 (+0.0275) 0.4985 (-0.0021) 0.4345 (-0.0208)
3.1917 15700 2.0326 2.0865 0.4332 (-0.1073) 0.3420 (+0.0170) 0.5093 (+0.0087) 0.4282 (-0.0272)
3.2120 15800 2.0383 2.0853 0.4601 (-0.0803) 0.3502 (+0.0251) 0.4933 (-0.0073) 0.4346 (-0.0208)
3.2324 15900 2.0363 2.0863 0.4727 (-0.0677) 0.3458 (+0.0208) 0.4827 (-0.0180) 0.4337 (-0.0216)
3.2527 16000 2.0302 2.0845 0.4590 (-0.0814) 0.3485 (+0.0235) 0.4647 (-0.0359) 0.4241 (-0.0313)
3.2730 16100 2.0438 2.0866 0.4531 (-0.0873) 0.3596 (+0.0346) 0.4927 (-0.0080) 0.4351 (-0.0202)
3.2934 16200 2.0354 2.0848 0.4331 (-0.1073) 0.3436 (+0.0186) 0.4802 (-0.0205) 0.4190 (-0.0364)
3.3137 16300 2.036 2.0859 0.4514 (-0.0890) 0.3637 (+0.0386) 0.4919 (-0.0087) 0.4357 (-0.0197)
3.3340 16400 2.0439 2.0870 0.4486 (-0.0919) 0.3519 (+0.0269) 0.4808 (-0.0198) 0.4271 (-0.0283)
3.3543 16500 2.0346 2.0847 0.4647 (-0.0757) 0.3511 (+0.0261) 0.5037 (+0.0030) 0.4398 (-0.0155)
3.3747 16600 2.0404 2.0847 0.4494 (-0.0910) 0.3587 (+0.0337) 0.5064 (+0.0058) 0.4382 (-0.0172)
3.3950 16700 2.0283 2.0860 0.4593 (-0.0812) 0.3540 (+0.0289) 0.4988 (-0.0018) 0.4374 (-0.0180)
3.4153 16800 2.0403 2.0863 0.4439 (-0.0965) 0.3525 (+0.0274) 0.4779 (-0.0227) 0.4248 (-0.0306)
3.4357 16900 2.0396 2.0851 0.4530 (-0.0875) 0.3527 (+0.0276) 0.5003 (-0.0004) 0.4353 (-0.0201)
3.4560 17000 2.0383 2.0847 0.4314 (-0.1091) 0.3609 (+0.0358) 0.5090 (+0.0083) 0.4337 (-0.0216)
3.4763 17100 2.0291 2.0866 0.4349 (-0.1056) 0.3504 (+0.0254) 0.4976 (-0.0031) 0.4276 (-0.0277)
3.4966 17200 2.0456 2.0875 0.4407 (-0.0997) 0.3531 (+0.0280) 0.4960 (-0.0046) 0.4299 (-0.0254)
3.5170 17300 2.0372 2.0845 0.4430 (-0.0974) 0.3650 (+0.0399) 0.5088 (+0.0081) 0.4389 (-0.0164)
3.5373 17400 2.0296 2.0876 0.4554 (-0.0851) 0.3612 (+0.0361) 0.4999 (-0.0007) 0.4388 (-0.0165)
3.5576 17500 2.0449 2.0860 0.4526 (-0.0879) 0.3567 (+0.0317) 0.4899 (-0.0108) 0.4331 (-0.0223)
3.5780 17600 2.0342 2.0872 0.4590 (-0.0814) 0.3599 (+0.0348) 0.4997 (-0.0010) 0.4395 (-0.0158)
3.5983 17700 2.0458 2.0854 0.4419 (-0.0985) 0.3607 (+0.0357) 0.4933 (-0.0074) 0.4320 (-0.0234)
3.6186 17800 2.0373 2.0871 0.4441 (-0.0963) 0.3581 (+0.0331) 0.5107 (+0.0101) 0.4377 (-0.0177)
3.6390 17900 2.0377 2.0853 0.4520 (-0.0885) 0.3563 (+0.0313) 0.4944 (-0.0062) 0.4342 (-0.0211)
3.6593 18000 2.0374 2.0869 0.4268 (-0.1137) 0.3616 (+0.0365) 0.5196 (+0.0189) 0.4360 (-0.0194)
3.6796 18100 2.0365 2.0862 0.4335 (-0.1069) 0.3581 (+0.0331) 0.4978 (-0.0028) 0.4298 (-0.0256)
3.6999 18200 2.0393 2.0856 0.4448 (-0.0956) 0.3620 (+0.0370) 0.4978 (-0.0029) 0.4349 (-0.0205)
3.7203 18300 2.0277 2.0861 0.4398 (-0.1007) 0.3578 (+0.0328) 0.4823 (-0.0183) 0.4266 (-0.0287)
3.7406 18400 2.0456 2.0867 0.4402 (-0.1003) 0.3495 (+0.0245) 0.4765 (-0.0242) 0.4221 (-0.0333)
3.7609 18500 2.031 2.0871 0.4532 (-0.0872) 0.3447 (+0.0196) 0.5144 (+0.0137) 0.4374 (-0.0180)
3.7813 18600 2.0279 2.0865 0.4628 (-0.0776) 0.3474 (+0.0224) 0.5013 (+0.0007) 0.4372 (-0.0182)
3.8016 18700 2.0412 2.0849 0.4518 (-0.0887) 0.3533 (+0.0283) 0.4898 (-0.0108) 0.4316 (-0.0237)
3.8219 18800 2.0345 2.0858 0.4627 (-0.0777) 0.3467 (+0.0217) 0.4885 (-0.0121) 0.4327 (-0.0227)
3.8422 18900 2.0391 2.0858 0.4603 (-0.0801) 0.3401 (+0.0150) 0.4664 (-0.0342) 0.4223 (-0.0331)
3.8626 19000 2.0334 2.0879 0.4523 (-0.0882) 0.3504 (+0.0253) 0.5032 (+0.0025) 0.4353 (-0.0201)
3.8829 19100 2.0443 2.0870 0.4256 (-0.1148) 0.3554 (+0.0304) 0.5072 (+0.0066) 0.4294 (-0.0259)
3.9032 19200 2.0391 2.0866 0.4372 (-0.1032) 0.3538 (+0.0287) 0.4997 (-0.0009) 0.4302 (-0.0252)
3.9236 19300 2.039 2.0859 0.4392 (-0.1013) 0.3472 (+0.0221) 0.4994 (-0.0013) 0.4286 (-0.0268)
3.9439 19400 2.0344 2.0859 0.4586 (-0.0818) 0.3553 (+0.0303) 0.4800 (-0.0206) 0.4313 (-0.0240)
3.9642 19500 2.0373 2.0855 0.4460 (-0.0944) 0.3579 (+0.0329) 0.4853 (-0.0153) 0.4298 (-0.0256)
3.9845 19600 2.0334 2.0867 0.4517 (-0.0888) 0.3558 (+0.0307) 0.4866 (-0.0140) 0.4314 (-0.0240)
4.0049 19700 2.0305 2.0885 0.4414 (-0.0990) 0.3644 (+0.0394) 0.4807 (-0.0199) 0.4288 (-0.0265)
4.0252 19800 2.0246 2.0898 0.4413 (-0.0991) 0.3506 (+0.0255) 0.4561 (-0.0446) 0.4160 (-0.0394)
4.0455 19900 2.0252 2.0886 0.4442 (-0.0963) 0.3524 (+0.0274) 0.4609 (-0.0397) 0.4192 (-0.0362)
4.0659 20000 2.0244 2.0883 0.4377 (-0.1027) 0.3536 (+0.0285) 0.4624 (-0.0383) 0.4179 (-0.0375)
4.0862 20100 2.0203 2.0902 0.4245 (-0.1159) 0.3570 (+0.0320) 0.4667 (-0.0339) 0.4161 (-0.0393)
4.1065 20200 2.0254 2.0902 0.4236 (-0.1168) 0.3601 (+0.0350) 0.4730 (-0.0277) 0.4189 (-0.0365)
4.1269 20300 2.0223 2.0899 0.4231 (-0.1173) 0.3576 (+0.0326) 0.4564 (-0.0443) 0.4124 (-0.0430)
4.1472 20400 2.029 2.0906 0.4168 (-0.1237) 0.3546 (+0.0296) 0.4536 (-0.0470) 0.4083 (-0.0470)
4.1675 20500 2.0268 2.0905 0.4072 (-0.1332) 0.3577 (+0.0326) 0.4670 (-0.0336) 0.4106 (-0.0447)
4.1878 20600 2.0244 2.0913 0.4068 (-0.1336) 0.3442 (+0.0192) 0.4718 (-0.0289) 0.4076 (-0.0478)
4.2082 20700 2.0247 2.0911 0.4068 (-0.1336) 0.3459 (+0.0209) 0.4708 (-0.0298) 0.4079 (-0.0475)
4.2285 20800 2.0181 2.0900 0.4138 (-0.1266) 0.3487 (+0.0237) 0.4613 (-0.0393) 0.4079 (-0.0474)
4.2488 20900 2.0234 2.0911 0.4240 (-0.1164) 0.3530 (+0.0279) 0.4681 (-0.0326) 0.4150 (-0.0403)
4.2692 21000 2.0198 2.0901 0.4075 (-0.1329) 0.3482 (+0.0232) 0.4594 (-0.0413) 0.4050 (-0.0503)
4.2895 21100 2.0245 2.0912 0.4049 (-0.1355) 0.3390 (+0.0140) 0.4734 (-0.0273) 0.4058 (-0.0496)
4.3098 21200 2.0234 2.0900 0.4017 (-0.1387) 0.3463 (+0.0213) 0.4707 (-0.0300) 0.4062 (-0.0491)
4.3301 21300 2.0359 2.0898 0.4021 (-0.1383) 0.3485 (+0.0235) 0.4795 (-0.0211) 0.4100 (-0.0453)
4.3505 21400 2.0234 2.0898 0.4075 (-0.1329) 0.3436 (+0.0185) 0.4649 (-0.0358) 0.4053 (-0.0500)
4.3708 21500 2.0229 2.0905 0.4194 (-0.1210) 0.3442 (+0.0191) 0.4680 (-0.0326) 0.4105 (-0.0448)
4.3911 21600 2.0226 2.0896 0.4245 (-0.1159) 0.3432 (+0.0182) 0.4688 (-0.0319) 0.4122 (-0.0432)
4.4115 21700 2.0257 2.0908 0.4145 (-0.1259) 0.3414 (+0.0164) 0.4567 (-0.0440) 0.4042 (-0.0512)
4.4318 21800 2.0212 2.0902 0.4149 (-0.1255) 0.3487 (+0.0236) 0.4550 (-0.0457) 0.4062 (-0.0492)
4.4521 21900 2.0281 2.0916 0.3951 (-0.1453) 0.3453 (+0.0203) 0.4601 (-0.0405) 0.4002 (-0.0552)
4.4725 22000 2.0312 2.0909 0.4023 (-0.1382) 0.3459 (+0.0208) 0.4570 (-0.0437) 0.4017 (-0.0537)
4.4928 22100 2.0143 2.0905 0.3911 (-0.1493) 0.3501 (+0.0251) 0.4518 (-0.0488) 0.3977 (-0.0577)
4.5131 22200 2.0287 2.0905 0.4173 (-0.1231) 0.3526 (+0.0276) 0.4563 (-0.0443) 0.4087 (-0.0466)
4.5334 22300 2.0156 2.0917 0.4105 (-0.1299) 0.3520 (+0.0269) 0.4495 (-0.0512) 0.4040 (-0.0514)
4.5538 22400 2.0244 2.0905 0.4012 (-0.1393) 0.3461 (+0.0210) 0.4506 (-0.0501) 0.3993 (-0.0561)
4.5741 22500 2.0296 2.0901 0.3983 (-0.1421) 0.3502 (+0.0252) 0.4526 (-0.0480) 0.4004 (-0.0550)
4.5944 22600 2.0293 2.0906 0.4096 (-0.1308) 0.3514 (+0.0263) 0.4467 (-0.0539) 0.4026 (-0.0528)
4.6148 22700 2.0239 2.0908 0.3976 (-0.1428) 0.3490 (+0.0240) 0.4510 (-0.0496) 0.3992 (-0.0562)
4.6351 22800 2.0255 2.0911 0.3975 (-0.1429) 0.3496 (+0.0245) 0.4579 (-0.0428) 0.4017 (-0.0537)
4.6554 22900 2.0167 2.0911 0.3908 (-0.1497) 0.3470 (+0.0219) 0.4534 (-0.0473) 0.3970 (-0.0583)
4.6757 23000 2.0205 2.0908 0.4179 (-0.1225) 0.3486 (+0.0235) 0.4516 (-0.0491) 0.4060 (-0.0493)
4.6961 23100 2.0284 2.0911 0.4310 (-0.1095) 0.3488 (+0.0238) 0.4499 (-0.0507) 0.4099 (-0.0455)
4.7164 23200 2.022 2.0910 0.4199 (-0.1205) 0.3469 (+0.0219) 0.4549 (-0.0458) 0.4072 (-0.0481)
4.7367 23300 2.0176 2.0910 0.4172 (-0.1232) 0.3449 (+0.0198) 0.4549 (-0.0458) 0.4056 (-0.0497)
4.7571 23400 2.0102 2.0915 0.4054 (-0.1351) 0.3456 (+0.0206) 0.4501 (-0.0506) 0.4003 (-0.0550)
4.7774 23500 2.0097 2.0916 0.4000 (-0.1404) 0.3442 (+0.0192) 0.4442 (-0.0564) 0.3962 (-0.0592)
4.7977 23600 2.0179 2.0907 0.3971 (-0.1433) 0.3455 (+0.0205) 0.4538 (-0.0468) 0.3988 (-0.0565)
4.8181 23700 2.0244 2.0913 0.3962 (-0.1442) 0.3444 (+0.0193) 0.4537 (-0.0470) 0.3981 (-0.0573)
4.8384 23800 2.0168 2.0903 0.4028 (-0.1376) 0.3417 (+0.0167) 0.4502 (-0.0504) 0.3982 (-0.0571)
4.8587 23900 2.022 2.0910 0.3988 (-0.1416) 0.3473 (+0.0223) 0.4520 (-0.0486) 0.3994 (-0.0560)
4.8790 24000 2.0309 2.0909 0.4078 (-0.1326) 0.3445 (+0.0195) 0.4528 (-0.0478) 0.4017 (-0.0536)
4.8994 24100 2.0208 2.0912 0.3954 (-0.1451) 0.3420 (+0.0170) 0.4514 (-0.0492) 0.3963 (-0.0591)
4.9197 24200 2.0146 2.0907 0.4085 (-0.1319) 0.3421 (+0.0171) 0.4520 (-0.0486) 0.4009 (-0.0545)
4.9400 24300 2.0259 2.0907 0.4032 (-0.1372) 0.3439 (+0.0188) 0.4523 (-0.0483) 0.3998 (-0.0556)
4.9604 24400 2.0286 2.0906 0.4032 (-0.1372) 0.3449 (+0.0199) 0.4523 (-0.0483) 0.4002 (-0.0552)
4.9807 24500 2.0188 2.0910 0.4022 (-0.1382) 0.3395 (+0.0145) 0.4508 (-0.0498) 0.3975 (-0.0578)
-1 -1 - - 0.5898 (+0.0494) 0.3760 (+0.0510) 0.6450 (+0.1443) 0.5369 (+0.0816)
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.18
  • Sentence Transformers: 5.0.0
  • Transformers: 4.56.0.dev0
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.9.0
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ListNetLoss

@inproceedings{cao2007learning,
    title={Learning to Rank: From Pairwise Approach to Listwise Approach},
    author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
    booktitle={Proceedings of the 24th international conference on Machine learning},
    pages={129--136},
    year={2007}
}
Downloads last month
2
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-150m-listnet

Finetuned
(5)
this model

Dataset used to train rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-150m-listnet

Evaluation results