CrossEncoder based on jhu-clsp/ettin-encoder-150m
This is a Cross Encoder model finetuned from jhu-clsp/ettin-encoder-150m on the ms_marco dataset using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: jhu-clsp/ettin-encoder-150m
- Maximum Sequence Length: 7999 tokens
- Number of Output Labels: 1 label
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-150m-listnet")
# Get scores for pairs of texts
pairs = [
['how to transfer credit etisalat', 'Transferring credit from your mobile to another mobile is easy and quick. You can now transfer credit in 2 ways—Normal Credit Transfer and the Secure Credit Transfer. To transfer credit with Normal Credit Transfer, simply type: *100*Mobile Number*Amount to be transferred# then press SEND. E.g.: If you wish to send AED 5, simply type *100*05XXXXXXXX*5# then press SEND. Secure Credit Transfer Method. 5% of the transferred amount will be deducted from the sender as a transaction fee. Example: If Mobile A transferred AED 100 to Mobile B, then AED 105 (AED 100 + AED 5 = [100*5%]) will be deducted from Mobile A and Mobile B will receive AED 100.'],
['how to transfer credit etisalat', 'How to transfer credit on Etisalat Nigeria SIM Card. You can electronically transfer airtime from the existing credit in your Etisalat prepaid account to another Etisalat prepaid account. You can transfer any amount. MSISDN = The Etisalat number you want to transfer airtime to. Etisalat Nigeria notifies the sender and receiver about the transaction via USSD and SMS message. In case you forget your password or the SIM is locked due to entry of wrong password several times, just call Etisalat customer care.'],
['how to transfer credit etisalat', "Type in the number to which you want to transfer credit. Make sure the number is in the international format -- it should start with a +, followed by the two-digit country code and then the cell phone number without the first zero. Send the SMS to 1700 and wait for a message telling you how to proceed. 1 This is deducted from the sender's account. 2 You can only transfer credit from and into an active account. 3 You can only make three international credit transfers a week and a maximum of 10 per month. 4 Credit limits are set at 300 AED per transfer to a maximum of 500 AED a month."],
['how to transfer credit etisalat', "If you have an Etisalat prepaid or postpaid cell phone, you can transfer credit from your account to other network users. You can send credit in United Arab Emirates dirhams or in other currencies if you use the international transfer service. 1 This is deducted from the sender's account. 2 You can only transfer credit from and into an active account. 3 You can only make three international credit transfers a week and a maximum of 10 per month. 4 Credit limits are set at 300 AED per transfer to a maximum of 500 AED a month."],
['how to transfer credit etisalat', "Published. Etisalat has launched the ‘International Credit Transfer' facilitating its ‘Wasel’ and ‘Ahlan’ prepaid customers to transfer airtime to any prepaid account globally. Etisalat customers currently are able to transfer balance between local mobile accounts. "],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'how to transfer credit etisalat',
[
'Transferring credit from your mobile to another mobile is easy and quick. You can now transfer credit in 2 ways—Normal Credit Transfer and the Secure Credit Transfer. To transfer credit with Normal Credit Transfer, simply type: *100*Mobile Number*Amount to be transferred# then press SEND. E.g.: If you wish to send AED 5, simply type *100*05XXXXXXXX*5# then press SEND. Secure Credit Transfer Method. 5% of the transferred amount will be deducted from the sender as a transaction fee. Example: If Mobile A transferred AED 100 to Mobile B, then AED 105 (AED 100 + AED 5 = [100*5%]) will be deducted from Mobile A and Mobile B will receive AED 100.',
'How to transfer credit on Etisalat Nigeria SIM Card. You can electronically transfer airtime from the existing credit in your Etisalat prepaid account to another Etisalat prepaid account. You can transfer any amount. MSISDN = The Etisalat number you want to transfer airtime to. Etisalat Nigeria notifies the sender and receiver about the transaction via USSD and SMS message. In case you forget your password or the SIM is locked due to entry of wrong password several times, just call Etisalat customer care.',
"Type in the number to which you want to transfer credit. Make sure the number is in the international format -- it should start with a +, followed by the two-digit country code and then the cell phone number without the first zero. Send the SMS to 1700 and wait for a message telling you how to proceed. 1 This is deducted from the sender's account. 2 You can only transfer credit from and into an active account. 3 You can only make three international credit transfers a week and a maximum of 10 per month. 4 Credit limits are set at 300 AED per transfer to a maximum of 500 AED a month.",
"If you have an Etisalat prepaid or postpaid cell phone, you can transfer credit from your account to other network users. You can send credit in United Arab Emirates dirhams or in other currencies if you use the international transfer service. 1 This is deducted from the sender's account. 2 You can only transfer credit from and into an active account. 3 You can only make three international credit transfers a week and a maximum of 10 per month. 4 Credit limits are set at 300 AED per transfer to a maximum of 500 AED a month.",
"Published. Etisalat has launched the ‘International Credit Transfer' facilitating its ‘Wasel’ and ‘Ahlan’ prepaid customers to transfer airtime to any prepaid account globally. Etisalat customers currently are able to transfer balance between local mobile accounts. ",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100,NanoNFCorpus_R100andNanoNQ_R100 - Evaluated with
CrossEncoderRerankingEvaluatorwith these parameters:{ "at_k": 10, "always_rerank_positives": true }
| Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
|---|---|---|---|
| map | 0.5325 (+0.0429) | 0.3438 (+0.0828) | 0.5945 (+0.1749) |
| mrr@10 | 0.5238 (+0.0463) | 0.5468 (+0.0470) | 0.6074 (+0.1807) |
| ndcg@10 | 0.5898 (+0.0494) | 0.3760 (+0.0510) | 0.6450 (+0.1443) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean - Evaluated with
CrossEncoderNanoBEIREvaluatorwith these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
| Metric | Value |
|---|---|
| map | 0.4903 (+0.1002) |
| mrr@10 | 0.5593 (+0.0913) |
| ndcg@10 | 0.5369 (+0.0816) |
Training Details
Training Dataset
ms_marco
- Dataset: ms_marco at a47ee7a
- Size: 78,704 training samples
- Columns:
query,docs, andlabels - Approximate statistics based on the first 1000 samples:
query docs labels type string list list details - min: 10 characters
- mean: 34.47 characters
- max: 101 characters
- min: 3 elements
- mean: 6.50 elements
- max: 10 elements
- min: 3 elements
- mean: 6.50 elements
- max: 10 elements
- Samples:
query docs labels is sugar made from beets['How Beet Sugar is Made-the Basic Story. White beet sugar is made from the beets in a single process, rather than the two steps involved with cane sugar. Because the beets have come from the ground they are much dirtier than sugar cane and have to be thoroughly washed and separated from any remaining beet leaves, stones and other trash material before processing. Extraction. The processing starts by slicing the beets into thin chips.', 'The bigger discrepancy seems to be with brown sugar made from beets. Brown sugar made from beet sugar has molasses added to the refined white sugar. The molasses byproduct from beet sugar production is sold as an addition to animal feed and not used in food for human consumption. With cane sugar the brown sugar may be a less refined product as it a step in the production process. Sugar beets are grown commercially in twelve states, as a summer crop in northern states like Michigan and Minnesota and as a winter crop in warmer climates like California. S...[1, 0, 0, 0, 0, ...]what gases are good insulators['Gases with electronegative species (i.e. halogens such as chlorine) make good insulators, hence the popularity of SF6, which is not only dense (breakdown voltage is roughly proportional to density) but is mostly Fluorine, a highly electronegative element. Sulfur Hexafluoride (SF6) - Sulfur Hexafluoride is probably the most popular insulating gas, although its cost has risen dramatically recently. Hydrogen-Hydrogen gas is not a particularly good insulator (65% of air) from a breakdown voltage standpoint. Its very low viscosity and high thermal capacity make it an insulating gas of choice for high speed, high voltage machinery such as turbogenerators', 'Conductors and Insulators. In a conductor, electric current can flow freely, in an insulator it cannot. Metals such as copper typify conductors, while most non-metallic solids are said to be good insulators, having extremely high resistance to the flow of charge through them. Conductor implies that the outer electrons of the atoms are l...[1, 0, 0, 0, 0, ...]concrete pouring cost['Needless to say, installing and/or making concrete is a job better left to the pros, but if you are up for a DIY challenge, you will certainly save some dough. According to our concrete slab material estimator, the average minimum cost per square foot of a concrete slab is $1.36 and the maximum is $1.88. By comparison, the price per square foot for a cement slab is $5.50. Just know that even if you do not hire a pro, there are additional costs that come with all concrete slab projects. Supplies, such as the wood used to shape the concrete, can add $3.75 per square foot.', "Basic concrete slab cost. I'll base my price on what my actual estimate would be to install a 6 thick concrete slab for one of my customers. Base cost for a 6 thick concrete slab -- $4.00 dollars per square foot --. Take the length of the concrete slab x the width of the slab to get the. total square footage. Multiply the total square footage by 4 (dollars) to get the total price.", 'Labor. The cost to pour a concrete pad takes a big jump if you hire the pros, who charge per hour, per worker. If forming and pouring your pad takes three workers two days to complete at a cost of $30 per worker hour, it could add around $1,400 to your bill.', 'Video on the cost of concrete floors. Depending on the level of complexity, concrete floors can cost as little as $2 to $6 a square foot or be as expensive as $15 to $30 a square foot.'][1, 0, 0, 0] - Loss:
ListNetLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": 16 }
Evaluation Dataset
ms_marco
- Dataset: ms_marco at a47ee7a
- Size: 1,000 evaluation samples
- Columns:
query,docs, andlabels - Approximate statistics based on the first 1000 samples:
query docs labels type string list list details - min: 10 characters
- mean: 33.89 characters
- max: 101 characters
- min: 2 elements
- mean: 6.00 elements
- max: 10 elements
- min: 2 elements
- mean: 6.00 elements
- max: 10 elements
- Samples:
query docs labels how to transfer credit etisalat['Transferring credit from your mobile to another mobile is easy and quick. You can now transfer credit in 2 ways—Normal Credit Transfer and the Secure Credit Transfer. To transfer credit with Normal Credit Transfer, simply type: 100Mobile NumberAmount to be transferred# then press SEND. E.g.: If you wish to send AED 5, simply type 10005XXXXXXXX5# then press SEND. Secure Credit Transfer Method. 5% of the transferred amount will be deducted from the sender as a transaction fee. Example: If Mobile A transferred AED 100 to Mobile B, then AED 105 (AED 100 + AED 5 = [100*5%]) will be deducted from Mobile A and Mobile B will receive AED 100.', 'How to transfer credit on Etisalat Nigeria SIM Card. You can electronically transfer airtime from the existing credit in your Etisalat prepaid account to another Etisalat prepaid account. You can transfer any amount. MSISDN = The Etisalat number you want to transfer airtime to. Etisalat Nigeria notifies the sender and receiver about the transact...[1, 0, 0, 0, 0, ...]what is the transport system of the cell["Simple definition of a transport system in biology: A transport system is a means by which materials are moved (' transported ') from an exchange surface or exchange surface. to cells* located throughout the organism. * Not all individual cells require all of the many different types of materials carried by a transport system.", 'In cellular biology, membrane transport refers to the collection of mechanisms that regulate the passage of solutes such as ions and small molecules through biological membranes, which are lipid bilayers that contain proteins embedded in them. ', 'Transport system in plant. Transport system in plant consists of tubes (vessels) of cells, adapted to perform the function of transport, so it is known as vascular system. There are two types of vessels in the plant 1. Xylem: transport water and mineral from roots to leaves. 2.', 'The transport system of the cell between the nucleus and the cytoplam is the endoplasmic rectiulum which is a complex system of membrane...[1, 0, 0, 0, 0, ...]who coined the term hegemonic['As a sociologic concept, the hegemonic nature of hegemonic masculinity derives from the theory of cultural hegemony, by Marxist theorist Antonio Gramsci, which analyzes the power relations among the social classes of a society. For example, Laurie argues that the hegemonic masculinity framework lends itself to a modified essentialism, wherein the achievement of masculine goals is frequently attributed to a way of thinking understood as inherent to the male psyche, and in relation to an innate disposition for homosocial bonding.', 'According to Nick Trujillo, author of “Hegemonic Masculinity on the Mound,” in which he analyzes the concept within the American sports culture, there are five particular dimensions. That the stereotypical male exercise physical force and control is first and foremost. ', 'Also, it could be used for the geopolitical and the cultural predominance of one country over others; from which was derived hegemonism, as in the idea that the Great Powers meant to esta...[1, 0, 0, 0, 0, ...] - Loss:
ListNetLosswith these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "mini_batch_size": 16 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16learning_rate: 2e-05num_train_epochs: 5seed: 12bf16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 12data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
|---|---|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.0509 (-0.4895) | 0.2468 (-0.0783) | 0.0195 (-0.4811) | 0.1057 (-0.3496) |
| 0.0002 | 1 | 2.0621 | - | - | - | - | - |
| 0.0203 | 100 | 2.0831 | 2.0928 | 0.0270 (-0.5134) | 0.2415 (-0.0835) | 0.0767 (-0.4240) | 0.1151 (-0.3403) |
| 0.0407 | 200 | 2.0877 | 2.0909 | 0.0732 (-0.4673) | 0.3028 (-0.0222) | 0.1484 (-0.3522) | 0.1748 (-0.2806) |
| 0.0610 | 300 | 2.0823 | 2.0950 | 0.0456 (-0.4948) | 0.2933 (-0.0318) | 0.0394 (-0.4613) | 0.1261 (-0.3293) |
| 0.0813 | 400 | 2.0825 | 2.0948 | 0.0309 (-0.5095) | 0.2526 (-0.0725) | 0.0520 (-0.4486) | 0.1118 (-0.3435) |
| 0.1016 | 500 | 2.0877 | 2.0929 | 0.0507 (-0.4898) | 0.3317 (+0.0067) | 0.0590 (-0.4416) | 0.1471 (-0.3082) |
| 0.1220 | 600 | 2.0901 | 2.0915 | 0.1175 (-0.4229) | 0.2624 (-0.0626) | 0.0677 (-0.4329) | 0.1492 (-0.3062) |
| 0.1423 | 700 | 2.0775 | 2.0909 | 0.0970 (-0.4434) | 0.2908 (-0.0343) | 0.0585 (-0.4421) | 0.1488 (-0.3066) |
| 0.1626 | 800 | 2.0828 | 2.0904 | 0.1654 (-0.3751) | 0.3020 (-0.0231) | 0.1146 (-0.3860) | 0.1940 (-0.2614) |
| 0.1830 | 900 | 2.0773 | 2.0906 | 0.1242 (-0.4162) | 0.2828 (-0.0422) | 0.0940 (-0.4067) | 0.1670 (-0.2884) |
| 0.2033 | 1000 | 2.0746 | 2.0858 | 0.4331 (-0.1073) | 0.3011 (-0.0239) | 0.4507 (-0.0500) | 0.3950 (-0.0604) |
| 0.2236 | 1100 | 2.0764 | 2.0839 | 0.4451 (-0.0953) | 0.3484 (+0.0234) | 0.4370 (-0.0637) | 0.4102 (-0.0452) |
| 0.2440 | 1200 | 2.087 | 2.0822 | 0.4766 (-0.0638) | 0.3698 (+0.0448) | 0.4646 (-0.0361) | 0.4370 (-0.0184) |
| 0.2643 | 1300 | 2.074 | 2.0813 | 0.5038 (-0.0366) | 0.3605 (+0.0355) | 0.4657 (-0.0350) | 0.4433 (-0.0120) |
| 0.2846 | 1400 | 2.0768 | 2.0803 | 0.5417 (+0.0013) | 0.3748 (+0.0498) | 0.5447 (+0.0441) | 0.4871 (+0.0317) |
| 0.3049 | 1500 | 2.0749 | 2.0798 | 0.5016 (-0.0389) | 0.3661 (+0.0411) | 0.5801 (+0.0795) | 0.4826 (+0.0272) |
| 0.3253 | 1600 | 2.0803 | 2.0812 | 0.5325 (-0.0080) | 0.3759 (+0.0508) | 0.5822 (+0.0816) | 0.4969 (+0.0415) |
| 0.3456 | 1700 | 2.0759 | 2.0792 | 0.5462 (+0.0058) | 0.3803 (+0.0552) | 0.5532 (+0.0525) | 0.4932 (+0.0379) |
| 0.3659 | 1800 | 2.0795 | 2.0787 | 0.5299 (-0.0106) | 0.3691 (+0.0441) | 0.5743 (+0.0737) | 0.4911 (+0.0357) |
| 0.3863 | 1900 | 2.0651 | 2.0788 | 0.5356 (-0.0048) | 0.3583 (+0.0332) | 0.5916 (+0.0909) | 0.4952 (+0.0398) |
| 0.4066 | 2000 | 2.0719 | 2.0785 | 0.5719 (+0.0315) | 0.3887 (+0.0637) | 0.5866 (+0.0860) | 0.5158 (+0.0604) |
| 0.4269 | 2100 | 2.07 | 2.0784 | 0.5549 (+0.0145) | 0.3516 (+0.0266) | 0.6274 (+0.1267) | 0.5113 (+0.0559) |
| 0.4472 | 2200 | 2.0662 | 2.0778 | 0.5629 (+0.0224) | 0.3750 (+0.0500) | 0.5731 (+0.0724) | 0.5036 (+0.0483) |
| 0.4676 | 2300 | 2.0695 | 2.0774 | 0.5723 (+0.0319) | 0.3479 (+0.0228) | 0.6157 (+0.1150) | 0.5120 (+0.0566) |
| 0.4879 | 2400 | 2.0736 | 2.0777 | 0.5560 (+0.0155) | 0.3711 (+0.0460) | 0.6402 (+0.1395) | 0.5224 (+0.0670) |
| 0.5082 | 2500 | 2.0617 | 2.0776 | 0.5274 (-0.0130) | 0.3585 (+0.0334) | 0.6576 (+0.1570) | 0.5145 (+0.0591) |
| 0.5286 | 2600 | 2.0807 | 2.0770 | 0.5362 (-0.0043) | 0.3706 (+0.0456) | 0.6021 (+0.1014) | 0.5029 (+0.0476) |
| 0.5489 | 2700 | 2.0716 | 2.0772 | 0.5514 (+0.0110) | 0.3849 (+0.0599) | 0.6472 (+0.1466) | 0.5278 (+0.0725) |
| 0.5692 | 2800 | 2.0691 | 2.0767 | 0.5551 (+0.0146) | 0.3593 (+0.0343) | 0.6073 (+0.1066) | 0.5072 (+0.0519) |
| 0.5896 | 2900 | 2.0646 | 2.0770 | 0.5402 (-0.0003) | 0.3882 (+0.0632) | 0.5872 (+0.0865) | 0.5052 (+0.0498) |
| 0.6099 | 3000 | 2.0846 | 2.0777 | 0.5278 (-0.0126) | 0.3600 (+0.0350) | 0.5853 (+0.0847) | 0.4911 (+0.0357) |
| 0.6302 | 3100 | 2.0765 | 2.0768 | 0.5534 (+0.0130) | 0.3734 (+0.0483) | 0.6369 (+0.1363) | 0.5212 (+0.0659) |
| 0.6505 | 3200 | 2.0629 | 2.0767 | 0.5713 (+0.0309) | 0.3623 (+0.0373) | 0.6483 (+0.1476) | 0.5273 (+0.0719) |
| 0.6709 | 3300 | 2.0757 | 2.0764 | 0.5898 (+0.0494) | 0.3760 (+0.0510) | 0.6450 (+0.1443) | 0.5369 (+0.0816) |
| 0.6912 | 3400 | 2.0741 | 2.0765 | 0.5639 (+0.0234) | 0.3866 (+0.0616) | 0.6271 (+0.1265) | 0.5259 (+0.0705) |
| 0.7115 | 3500 | 2.0736 | 2.0766 | 0.5541 (+0.0136) | 0.3833 (+0.0583) | 0.6304 (+0.1298) | 0.5226 (+0.0672) |
| 0.7319 | 3600 | 2.0748 | 2.0763 | 0.5242 (-0.0163) | 0.3648 (+0.0398) | 0.6560 (+0.1554) | 0.5150 (+0.0596) |
| 0.7522 | 3700 | 2.0725 | 2.0762 | 0.5475 (+0.0071) | 0.3561 (+0.0311) | 0.5939 (+0.0933) | 0.4992 (+0.0438) |
| 0.7725 | 3800 | 2.0684 | 2.0761 | 0.5480 (+0.0076) | 0.3637 (+0.0387) | 0.6472 (+0.1466) | 0.5196 (+0.0643) |
| 0.7928 | 3900 | 2.0702 | 2.0762 | 0.6007 (+0.0603) | 0.3442 (+0.0192) | 0.6246 (+0.1240) | 0.5232 (+0.0678) |
| 0.8132 | 4000 | 2.0709 | 2.0767 | 0.5732 (+0.0327) | 0.3369 (+0.0119) | 0.6343 (+0.1337) | 0.5148 (+0.0594) |
| 0.8335 | 4100 | 2.0791 | 2.0762 | 0.5756 (+0.0352) | 0.3397 (+0.0146) | 0.6232 (+0.1226) | 0.5128 (+0.0575) |
| 0.8538 | 4200 | 2.0759 | 2.0760 | 0.5940 (+0.0536) | 0.3549 (+0.0299) | 0.6199 (+0.1192) | 0.5230 (+0.0676) |
| 0.8742 | 4300 | 2.0731 | 2.0760 | 0.5708 (+0.0304) | 0.3610 (+0.0360) | 0.6179 (+0.1173) | 0.5166 (+0.0612) |
| 0.8945 | 4400 | 2.0643 | 2.0757 | 0.5602 (+0.0198) | 0.3647 (+0.0397) | 0.5874 (+0.0867) | 0.5041 (+0.0487) |
| 0.9148 | 4500 | 2.0743 | 2.0761 | 0.5783 (+0.0379) | 0.3556 (+0.0306) | 0.6362 (+0.1356) | 0.5234 (+0.0680) |
| 0.9351 | 4600 | 2.0636 | 2.0758 | 0.5646 (+0.0241) | 0.3447 (+0.0197) | 0.6049 (+0.1043) | 0.5047 (+0.0494) |
| 0.9555 | 4700 | 2.0778 | 2.0761 | 0.5727 (+0.0322) | 0.3384 (+0.0134) | 0.6178 (+0.1171) | 0.5096 (+0.0543) |
| 0.9758 | 4800 | 2.074 | 2.0758 | 0.5670 (+0.0266) | 0.3557 (+0.0307) | 0.6099 (+0.1093) | 0.5109 (+0.0555) |
| 0.9961 | 4900 | 2.07 | 2.0759 | 0.5468 (+0.0063) | 0.3647 (+0.0396) | 0.6388 (+0.1381) | 0.5167 (+0.0614) |
| 1.0165 | 5000 | 2.0614 | 2.0759 | 0.5481 (+0.0077) | 0.3526 (+0.0276) | 0.6461 (+0.1455) | 0.5156 (+0.0603) |
| 1.0368 | 5100 | 2.0643 | 2.0759 | 0.5600 (+0.0196) | 0.3524 (+0.0274) | 0.6085 (+0.1079) | 0.5070 (+0.0516) |
| 1.0571 | 5200 | 2.0672 | 2.0760 | 0.5733 (+0.0329) | 0.3545 (+0.0294) | 0.6061 (+0.1055) | 0.5113 (+0.0559) |
| 1.0775 | 5300 | 2.0667 | 2.0759 | 0.5722 (+0.0318) | 0.3567 (+0.0316) | 0.6351 (+0.1344) | 0.5213 (+0.0660) |
| 1.0978 | 5400 | 2.0701 | 2.0762 | 0.5501 (+0.0097) | 0.3713 (+0.0462) | 0.6411 (+0.1405) | 0.5208 (+0.0655) |
| 1.1181 | 5500 | 2.0648 | 2.0765 | 0.5462 (+0.0058) | 0.3733 (+0.0483) | 0.6208 (+0.1202) | 0.5134 (+0.0581) |
| 1.1384 | 5600 | 2.0614 | 2.0759 | 0.5509 (+0.0105) | 0.3903 (+0.0653) | 0.5935 (+0.0928) | 0.5116 (+0.0562) |
| 1.1588 | 5700 | 2.0655 | 2.0764 | 0.5464 (+0.0060) | 0.3676 (+0.0426) | 0.5730 (+0.0724) | 0.4957 (+0.0403) |
| 1.1791 | 5800 | 2.0733 | 2.0761 | 0.5607 (+0.0203) | 0.3465 (+0.0214) | 0.6030 (+0.1024) | 0.5034 (+0.0480) |
| 1.1994 | 5900 | 2.0674 | 2.0765 | 0.5272 (-0.0133) | 0.3640 (+0.0390) | 0.5542 (+0.0536) | 0.4818 (+0.0264) |
| 1.2198 | 6000 | 2.0737 | 2.0761 | 0.5599 (+0.0194) | 0.3498 (+0.0247) | 0.5943 (+0.0936) | 0.5013 (+0.0459) |
| 1.2401 | 6100 | 2.0618 | 2.0763 | 0.5579 (+0.0174) | 0.3633 (+0.0382) | 0.5856 (+0.0850) | 0.5022 (+0.0469) |
| 1.2604 | 6200 | 2.0621 | 2.0762 | 0.5879 (+0.0475) | 0.3771 (+0.0521) | 0.6114 (+0.1108) | 0.5255 (+0.0701) |
| 1.2807 | 6300 | 2.0803 | 2.0760 | 0.5521 (+0.0117) | 0.3513 (+0.0263) | 0.6230 (+0.1223) | 0.5088 (+0.0534) |
| 1.3011 | 6400 | 2.059 | 2.0759 | 0.5739 (+0.0335) | 0.3582 (+0.0331) | 0.6165 (+0.1159) | 0.5162 (+0.0608) |
| 1.3214 | 6500 | 2.0708 | 2.0759 | 0.5218 (-0.0186) | 0.3348 (+0.0098) | 0.6288 (+0.1281) | 0.4951 (+0.0398) |
| 1.3417 | 6600 | 2.0584 | 2.0761 | 0.5522 (+0.0118) | 0.3656 (+0.0405) | 0.6456 (+0.1449) | 0.5211 (+0.0657) |
| 1.3621 | 6700 | 2.0581 | 2.0760 | 0.5326 (-0.0078) | 0.3504 (+0.0253) | 0.6119 (+0.1112) | 0.4983 (+0.0429) |
| 1.3824 | 6800 | 2.0618 | 2.0758 | 0.5589 (+0.0184) | 0.3695 (+0.0445) | 0.6101 (+0.1095) | 0.5128 (+0.0575) |
| 1.4027 | 6900 | 2.0576 | 2.0765 | 0.5571 (+0.0167) | 0.3624 (+0.0373) | 0.6230 (+0.1224) | 0.5142 (+0.0588) |
| 1.4231 | 7000 | 2.0652 | 2.0759 | 0.5354 (-0.0050) | 0.3579 (+0.0328) | 0.6062 (+0.1056) | 0.4998 (+0.0445) |
| 1.4434 | 7100 | 2.0646 | 2.0758 | 0.5316 (-0.0088) | 0.3572 (+0.0321) | 0.6205 (+0.1198) | 0.5031 (+0.0477) |
| 1.4637 | 7200 | 2.0701 | 2.0758 | 0.5367 (-0.0037) | 0.3679 (+0.0428) | 0.6702 (+0.1696) | 0.5249 (+0.0696) |
| 1.4840 | 7300 | 2.0751 | 2.0759 | 0.5430 (+0.0026) | 0.3586 (+0.0335) | 0.5973 (+0.0967) | 0.4996 (+0.0443) |
| 1.5044 | 7400 | 2.0661 | 2.0764 | 0.5827 (+0.0423) | 0.3881 (+0.0631) | 0.6341 (+0.1334) | 0.5350 (+0.0796) |
| 1.5247 | 7500 | 2.0742 | 2.0757 | 0.5416 (+0.0012) | 0.3907 (+0.0656) | 0.5900 (+0.0894) | 0.5074 (+0.0521) |
| 1.5450 | 7600 | 2.0599 | 2.0765 | 0.5336 (-0.0068) | 0.3682 (+0.0432) | 0.5989 (+0.0983) | 0.5002 (+0.0449) |
| 1.5654 | 7700 | 2.0719 | 2.0759 | 0.5402 (-0.0002) | 0.3661 (+0.0411) | 0.6070 (+0.1063) | 0.5044 (+0.0491) |
| 1.5857 | 7800 | 2.0715 | 2.0756 | 0.5590 (+0.0186) | 0.3612 (+0.0362) | 0.6180 (+0.1173) | 0.5127 (+0.0574) |
| 1.6060 | 7900 | 2.0686 | 2.0759 | 0.5665 (+0.0260) | 0.3518 (+0.0267) | 0.5853 (+0.0846) | 0.5012 (+0.0458) |
| 1.6263 | 8000 | 2.0597 | 2.0757 | 0.5646 (+0.0242) | 0.3662 (+0.0412) | 0.6050 (+0.1043) | 0.5119 (+0.0566) |
| 1.6467 | 8100 | 2.072 | 2.0756 | 0.5471 (+0.0067) | 0.3493 (+0.0243) | 0.6150 (+0.1143) | 0.5038 (+0.0484) |
| 1.6670 | 8200 | 2.0621 | 2.0755 | 0.5536 (+0.0132) | 0.3415 (+0.0164) | 0.6082 (+0.1076) | 0.5011 (+0.0457) |
| 1.6873 | 8300 | 2.0653 | 2.0757 | 0.5585 (+0.0180) | 0.3267 (+0.0016) | 0.6198 (+0.1192) | 0.5016 (+0.0463) |
| 1.7077 | 8400 | 2.0679 | 2.0754 | 0.5813 (+0.0409) | 0.3346 (+0.0095) | 0.6197 (+0.1190) | 0.5119 (+0.0565) |
| 1.7280 | 8500 | 2.0663 | 2.0759 | 0.5619 (+0.0215) | 0.3482 (+0.0232) | 0.6041 (+0.1035) | 0.5048 (+0.0494) |
| 1.7483 | 8600 | 2.0717 | 2.0759 | 0.5663 (+0.0258) | 0.3354 (+0.0104) | 0.6087 (+0.1080) | 0.5035 (+0.0481) |
| 1.7687 | 8700 | 2.0584 | 2.0758 | 0.5450 (+0.0046) | 0.3439 (+0.0188) | 0.6328 (+0.1321) | 0.5072 (+0.0519) |
| 1.7890 | 8800 | 2.0645 | 2.0756 | 0.5244 (-0.0160) | 0.3479 (+0.0229) | 0.6517 (+0.1510) | 0.5080 (+0.0526) |
| 1.8093 | 8900 | 2.0621 | 2.0762 | 0.5394 (-0.0010) | 0.3302 (+0.0051) | 0.6306 (+0.1299) | 0.5001 (+0.0447) |
| 1.8296 | 9000 | 2.0634 | 2.0757 | 0.5792 (+0.0388) | 0.3254 (+0.0004) | 0.6016 (+0.1009) | 0.5021 (+0.0467) |
| 1.8500 | 9100 | 2.0697 | 2.0758 | 0.5571 (+0.0167) | 0.3307 (+0.0057) | 0.6091 (+0.1085) | 0.4990 (+0.0436) |
| 1.8703 | 9200 | 2.066 | 2.0756 | 0.5550 (+0.0145) | 0.3467 (+0.0217) | 0.6023 (+0.1017) | 0.5013 (+0.0460) |
| 1.8906 | 9300 | 2.0612 | 2.0760 | 0.5541 (+0.0137) | 0.3464 (+0.0214) | 0.6126 (+0.1120) | 0.5044 (+0.0490) |
| 1.9110 | 9400 | 2.0678 | 2.0752 | 0.5349 (-0.0055) | 0.3585 (+0.0335) | 0.6248 (+0.1241) | 0.5061 (+0.0507) |
| 1.9313 | 9500 | 2.0715 | 2.0756 | 0.5459 (+0.0054) | 0.3613 (+0.0362) | 0.6308 (+0.1301) | 0.5126 (+0.0573) |
| 1.9516 | 9600 | 2.0586 | 2.0753 | 0.5346 (-0.0059) | 0.3583 (+0.0332) | 0.6446 (+0.1439) | 0.5125 (+0.0571) |
| 1.9719 | 9700 | 2.0573 | 2.0759 | 0.5462 (+0.0058) | 0.3551 (+0.0301) | 0.6515 (+0.1509) | 0.5176 (+0.0623) |
| 1.9923 | 9800 | 2.0634 | 2.0753 | 0.5465 (+0.0061) | 0.3644 (+0.0394) | 0.6047 (+0.1040) | 0.5052 (+0.0498) |
| 2.0126 | 9900 | 2.0659 | 2.0766 | 0.5366 (-0.0038) | 0.3529 (+0.0279) | 0.5920 (+0.0914) | 0.4938 (+0.0385) |
| 2.0329 | 10000 | 2.0514 | 2.0780 | 0.5466 (+0.0062) | 0.3489 (+0.0239) | 0.5667 (+0.0660) | 0.4874 (+0.0320) |
| 2.0533 | 10100 | 2.0506 | 2.0782 | 0.5444 (+0.0040) | 0.3564 (+0.0313) | 0.5532 (+0.0525) | 0.4847 (+0.0293) |
| 2.0736 | 10200 | 2.0528 | 2.0777 | 0.5340 (-0.0065) | 0.3289 (+0.0038) | 0.5812 (+0.0805) | 0.4813 (+0.0260) |
| 2.0939 | 10300 | 2.0552 | 2.0781 | 0.5045 (-0.0359) | 0.3402 (+0.0152) | 0.5500 (+0.0494) | 0.4649 (+0.0096) |
| 2.1143 | 10400 | 2.0551 | 2.0798 | 0.5110 (-0.0294) | 0.3490 (+0.0240) | 0.5577 (+0.0570) | 0.4726 (+0.0172) |
| 2.1346 | 10500 | 2.0472 | 2.0782 | 0.5238 (-0.0166) | 0.3567 (+0.0316) | 0.5681 (+0.0674) | 0.4829 (+0.0275) |
| 2.1549 | 10600 | 2.0568 | 2.0796 | 0.5299 (-0.0106) | 0.3561 (+0.0311) | 0.5770 (+0.0763) | 0.4876 (+0.0323) |
| 2.1752 | 10700 | 2.059 | 2.0794 | 0.5300 (-0.0105) | 0.3435 (+0.0184) | 0.5440 (+0.0434) | 0.4725 (+0.0171) |
| 2.1956 | 10800 | 2.0608 | 2.0783 | 0.5444 (+0.0040) | 0.3497 (+0.0246) | 0.5827 (+0.0820) | 0.4923 (+0.0369) |
| 2.2159 | 10900 | 2.0544 | 2.0792 | 0.5239 (-0.0165) | 0.3334 (+0.0083) | 0.5381 (+0.0374) | 0.4651 (+0.0097) |
| 2.2362 | 11000 | 2.0581 | 2.0784 | 0.5227 (-0.0177) | 0.3410 (+0.0159) | 0.5669 (+0.0662) | 0.4769 (+0.0215) |
| 2.2566 | 11100 | 2.0503 | 2.0798 | 0.4970 (-0.0435) | 0.3363 (+0.0112) | 0.5674 (+0.0667) | 0.4669 (+0.0115) |
| 2.2769 | 11200 | 2.0587 | 2.0783 | 0.5088 (-0.0317) | 0.3405 (+0.0155) | 0.5607 (+0.0601) | 0.4700 (+0.0146) |
| 2.2972 | 11300 | 2.058 | 2.0805 | 0.4763 (-0.0641) | 0.3391 (+0.0140) | 0.5457 (+0.0451) | 0.4537 (-0.0017) |
| 2.3175 | 11400 | 2.0481 | 2.0803 | 0.4811 (-0.0593) | 0.3442 (+0.0192) | 0.5410 (+0.0403) | 0.4554 (+0.0001) |
| 2.3379 | 11500 | 2.0507 | 2.0791 | 0.5030 (-0.0374) | 0.3337 (+0.0086) | 0.5680 (+0.0673) | 0.4682 (+0.0129) |
| 2.3582 | 11600 | 2.055 | 2.0792 | 0.4964 (-0.0440) | 0.3405 (+0.0154) | 0.5717 (+0.0711) | 0.4695 (+0.0142) |
| 2.3785 | 11700 | 2.0635 | 2.0815 | 0.4840 (-0.0564) | 0.3492 (+0.0241) | 0.5836 (+0.0830) | 0.4723 (+0.0169) |
| 2.3989 | 11800 | 2.054 | 2.0793 | 0.4744 (-0.0660) | 0.3428 (+0.0177) | 0.5253 (+0.0247) | 0.4475 (-0.0079) |
| 2.4192 | 11900 | 2.0489 | 2.0786 | 0.4984 (-0.0420) | 0.3333 (+0.0083) | 0.5213 (+0.0207) | 0.4510 (-0.0044) |
| 2.4395 | 12000 | 2.0592 | 2.0794 | 0.4884 (-0.0520) | 0.3586 (+0.0336) | 0.5415 (+0.0409) | 0.4629 (+0.0075) |
| 2.4598 | 12100 | 2.0414 | 2.0808 | 0.4966 (-0.0438) | 0.3583 (+0.0332) | 0.5937 (+0.0931) | 0.4829 (+0.0275) |
| 2.4802 | 12200 | 2.0594 | 2.0808 | 0.5062 (-0.0342) | 0.3423 (+0.0173) | 0.5675 (+0.0669) | 0.4720 (+0.0167) |
| 2.5005 | 12300 | 2.0473 | 2.0791 | 0.5141 (-0.0263) | 0.3357 (+0.0106) | 0.5754 (+0.0748) | 0.4751 (+0.0197) |
| 2.5208 | 12400 | 2.0587 | 2.0797 | 0.5011 (-0.0393) | 0.3528 (+0.0278) | 0.6013 (+0.1007) | 0.4851 (+0.0297) |
| 2.5412 | 12500 | 2.0647 | 2.0789 | 0.5021 (-0.0384) | 0.3519 (+0.0269) | 0.5815 (+0.0809) | 0.4785 (+0.0231) |
| 2.5615 | 12600 | 2.0436 | 2.0798 | 0.5156 (-0.0248) | 0.3509 (+0.0259) | 0.5845 (+0.0839) | 0.4837 (+0.0283) |
| 2.5818 | 12700 | 2.0543 | 2.0796 | 0.5150 (-0.0255) | 0.3541 (+0.0291) | 0.5852 (+0.0845) | 0.4848 (+0.0294) |
| 2.6022 | 12800 | 2.0562 | 2.0799 | 0.5079 (-0.0325) | 0.3605 (+0.0354) | 0.5974 (+0.0967) | 0.4886 (+0.0332) |
| 2.6225 | 12900 | 2.0609 | 2.0802 | 0.5194 (-0.0210) | 0.3544 (+0.0293) | 0.5770 (+0.0763) | 0.4836 (+0.0282) |
| 2.6428 | 13000 | 2.0493 | 2.0810 | 0.5179 (-0.0225) | 0.3536 (+0.0285) | 0.5621 (+0.0614) | 0.4778 (+0.0225) |
| 2.6631 | 13100 | 2.0497 | 2.0806 | 0.5102 (-0.0302) | 0.3561 (+0.0311) | 0.5521 (+0.0515) | 0.4728 (+0.0175) |
| 2.6835 | 13200 | 2.048 | 2.0789 | 0.5208 (-0.0196) | 0.3557 (+0.0307) | 0.5507 (+0.0501) | 0.4758 (+0.0204) |
| 2.7038 | 13300 | 2.0496 | 2.0788 | 0.4947 (-0.0458) | 0.3525 (+0.0274) | 0.5395 (+0.0388) | 0.4622 (+0.0068) |
| 2.7241 | 13400 | 2.0595 | 2.0784 | 0.4846 (-0.0558) | 0.3533 (+0.0283) | 0.5264 (+0.0257) | 0.4548 (-0.0006) |
| 2.7445 | 13500 | 2.0469 | 2.0797 | 0.4873 (-0.0531) | 0.3559 (+0.0308) | 0.5500 (+0.0494) | 0.4644 (+0.0090) |
| 2.7648 | 13600 | 2.0502 | 2.0787 | 0.4928 (-0.0476) | 0.3534 (+0.0284) | 0.5608 (+0.0601) | 0.4690 (+0.0137) |
| 2.7851 | 13700 | 2.062 | 2.0790 | 0.4826 (-0.0578) | 0.3629 (+0.0378) | 0.5539 (+0.0532) | 0.4665 (+0.0111) |
| 2.8054 | 13800 | 2.0583 | 2.0796 | 0.4838 (-0.0566) | 0.3714 (+0.0464) | 0.5506 (+0.0499) | 0.4686 (+0.0132) |
| 2.8258 | 13900 | 2.0563 | 2.0802 | 0.5056 (-0.0348) | 0.3573 (+0.0323) | 0.5560 (+0.0554) | 0.4730 (+0.0176) |
| 2.8461 | 14000 | 2.0624 | 2.0792 | 0.5001 (-0.0404) | 0.3549 (+0.0299) | 0.5459 (+0.0453) | 0.4670 (+0.0116) |
| 2.8664 | 14100 | 2.0623 | 2.0790 | 0.5096 (-0.0309) | 0.3741 (+0.0491) | 0.5426 (+0.0419) | 0.4754 (+0.0200) |
| 2.8868 | 14200 | 2.0609 | 2.0792 | 0.5122 (-0.0282) | 0.3730 (+0.0479) | 0.5261 (+0.0255) | 0.4704 (+0.0151) |
| 2.9071 | 14300 | 2.0522 | 2.0789 | 0.5244 (-0.0160) | 0.3727 (+0.0476) | 0.5549 (+0.0542) | 0.4840 (+0.0286) |
| 2.9274 | 14400 | 2.0576 | 2.0790 | 0.5215 (-0.0189) | 0.3668 (+0.0417) | 0.5466 (+0.0460) | 0.4783 (+0.0229) |
| 2.9478 | 14500 | 2.0489 | 2.0797 | 0.5195 (-0.0209) | 0.3699 (+0.0448) | 0.5520 (+0.0513) | 0.4805 (+0.0251) |
| 2.9681 | 14600 | 2.0421 | 2.0788 | 0.5184 (-0.0221) | 0.3740 (+0.0490) | 0.5494 (+0.0487) | 0.4806 (+0.0252) |
| 2.9884 | 14700 | 2.0523 | 2.0795 | 0.5034 (-0.0371) | 0.3734 (+0.0483) | 0.5535 (+0.0528) | 0.4767 (+0.0214) |
| 3.0087 | 14800 | 2.0386 | 2.0816 | 0.5120 (-0.0284) | 0.3784 (+0.0534) | 0.5241 (+0.0234) | 0.4715 (+0.0161) |
| 3.0291 | 14900 | 2.0298 | 2.0850 | 0.4934 (-0.0471) | 0.3687 (+0.0437) | 0.5259 (+0.0253) | 0.4627 (+0.0073) |
| 3.0494 | 15000 | 2.0421 | 2.0843 | 0.4711 (-0.0694) | 0.3680 (+0.0429) | 0.5447 (+0.0440) | 0.4612 (+0.0059) |
| 3.0697 | 15100 | 2.0404 | 2.0851 | 0.4817 (-0.0587) | 0.3647 (+0.0396) | 0.5243 (+0.0237) | 0.4569 (+0.0015) |
| 3.0901 | 15200 | 2.0281 | 2.0855 | 0.4825 (-0.0579) | 0.3517 (+0.0266) | 0.4892 (-0.0114) | 0.4411 (-0.0142) |
| 3.1104 | 15300 | 2.0219 | 2.0865 | 0.4477 (-0.0928) | 0.3636 (+0.0386) | 0.5097 (+0.0090) | 0.4403 (-0.0150) |
| 3.1307 | 15400 | 2.0449 | 2.0858 | 0.4554 (-0.0850) | 0.3534 (+0.0283) | 0.5038 (+0.0031) | 0.4375 (-0.0179) |
| 3.1510 | 15500 | 2.0337 | 2.0863 | 0.4450 (-0.0954) | 0.3547 (+0.0296) | 0.5142 (+0.0135) | 0.4380 (-0.0174) |
| 3.1714 | 15600 | 2.0401 | 2.0867 | 0.4525 (-0.0879) | 0.3525 (+0.0275) | 0.4985 (-0.0021) | 0.4345 (-0.0208) |
| 3.1917 | 15700 | 2.0326 | 2.0865 | 0.4332 (-0.1073) | 0.3420 (+0.0170) | 0.5093 (+0.0087) | 0.4282 (-0.0272) |
| 3.2120 | 15800 | 2.0383 | 2.0853 | 0.4601 (-0.0803) | 0.3502 (+0.0251) | 0.4933 (-0.0073) | 0.4346 (-0.0208) |
| 3.2324 | 15900 | 2.0363 | 2.0863 | 0.4727 (-0.0677) | 0.3458 (+0.0208) | 0.4827 (-0.0180) | 0.4337 (-0.0216) |
| 3.2527 | 16000 | 2.0302 | 2.0845 | 0.4590 (-0.0814) | 0.3485 (+0.0235) | 0.4647 (-0.0359) | 0.4241 (-0.0313) |
| 3.2730 | 16100 | 2.0438 | 2.0866 | 0.4531 (-0.0873) | 0.3596 (+0.0346) | 0.4927 (-0.0080) | 0.4351 (-0.0202) |
| 3.2934 | 16200 | 2.0354 | 2.0848 | 0.4331 (-0.1073) | 0.3436 (+0.0186) | 0.4802 (-0.0205) | 0.4190 (-0.0364) |
| 3.3137 | 16300 | 2.036 | 2.0859 | 0.4514 (-0.0890) | 0.3637 (+0.0386) | 0.4919 (-0.0087) | 0.4357 (-0.0197) |
| 3.3340 | 16400 | 2.0439 | 2.0870 | 0.4486 (-0.0919) | 0.3519 (+0.0269) | 0.4808 (-0.0198) | 0.4271 (-0.0283) |
| 3.3543 | 16500 | 2.0346 | 2.0847 | 0.4647 (-0.0757) | 0.3511 (+0.0261) | 0.5037 (+0.0030) | 0.4398 (-0.0155) |
| 3.3747 | 16600 | 2.0404 | 2.0847 | 0.4494 (-0.0910) | 0.3587 (+0.0337) | 0.5064 (+0.0058) | 0.4382 (-0.0172) |
| 3.3950 | 16700 | 2.0283 | 2.0860 | 0.4593 (-0.0812) | 0.3540 (+0.0289) | 0.4988 (-0.0018) | 0.4374 (-0.0180) |
| 3.4153 | 16800 | 2.0403 | 2.0863 | 0.4439 (-0.0965) | 0.3525 (+0.0274) | 0.4779 (-0.0227) | 0.4248 (-0.0306) |
| 3.4357 | 16900 | 2.0396 | 2.0851 | 0.4530 (-0.0875) | 0.3527 (+0.0276) | 0.5003 (-0.0004) | 0.4353 (-0.0201) |
| 3.4560 | 17000 | 2.0383 | 2.0847 | 0.4314 (-0.1091) | 0.3609 (+0.0358) | 0.5090 (+0.0083) | 0.4337 (-0.0216) |
| 3.4763 | 17100 | 2.0291 | 2.0866 | 0.4349 (-0.1056) | 0.3504 (+0.0254) | 0.4976 (-0.0031) | 0.4276 (-0.0277) |
| 3.4966 | 17200 | 2.0456 | 2.0875 | 0.4407 (-0.0997) | 0.3531 (+0.0280) | 0.4960 (-0.0046) | 0.4299 (-0.0254) |
| 3.5170 | 17300 | 2.0372 | 2.0845 | 0.4430 (-0.0974) | 0.3650 (+0.0399) | 0.5088 (+0.0081) | 0.4389 (-0.0164) |
| 3.5373 | 17400 | 2.0296 | 2.0876 | 0.4554 (-0.0851) | 0.3612 (+0.0361) | 0.4999 (-0.0007) | 0.4388 (-0.0165) |
| 3.5576 | 17500 | 2.0449 | 2.0860 | 0.4526 (-0.0879) | 0.3567 (+0.0317) | 0.4899 (-0.0108) | 0.4331 (-0.0223) |
| 3.5780 | 17600 | 2.0342 | 2.0872 | 0.4590 (-0.0814) | 0.3599 (+0.0348) | 0.4997 (-0.0010) | 0.4395 (-0.0158) |
| 3.5983 | 17700 | 2.0458 | 2.0854 | 0.4419 (-0.0985) | 0.3607 (+0.0357) | 0.4933 (-0.0074) | 0.4320 (-0.0234) |
| 3.6186 | 17800 | 2.0373 | 2.0871 | 0.4441 (-0.0963) | 0.3581 (+0.0331) | 0.5107 (+0.0101) | 0.4377 (-0.0177) |
| 3.6390 | 17900 | 2.0377 | 2.0853 | 0.4520 (-0.0885) | 0.3563 (+0.0313) | 0.4944 (-0.0062) | 0.4342 (-0.0211) |
| 3.6593 | 18000 | 2.0374 | 2.0869 | 0.4268 (-0.1137) | 0.3616 (+0.0365) | 0.5196 (+0.0189) | 0.4360 (-0.0194) |
| 3.6796 | 18100 | 2.0365 | 2.0862 | 0.4335 (-0.1069) | 0.3581 (+0.0331) | 0.4978 (-0.0028) | 0.4298 (-0.0256) |
| 3.6999 | 18200 | 2.0393 | 2.0856 | 0.4448 (-0.0956) | 0.3620 (+0.0370) | 0.4978 (-0.0029) | 0.4349 (-0.0205) |
| 3.7203 | 18300 | 2.0277 | 2.0861 | 0.4398 (-0.1007) | 0.3578 (+0.0328) | 0.4823 (-0.0183) | 0.4266 (-0.0287) |
| 3.7406 | 18400 | 2.0456 | 2.0867 | 0.4402 (-0.1003) | 0.3495 (+0.0245) | 0.4765 (-0.0242) | 0.4221 (-0.0333) |
| 3.7609 | 18500 | 2.031 | 2.0871 | 0.4532 (-0.0872) | 0.3447 (+0.0196) | 0.5144 (+0.0137) | 0.4374 (-0.0180) |
| 3.7813 | 18600 | 2.0279 | 2.0865 | 0.4628 (-0.0776) | 0.3474 (+0.0224) | 0.5013 (+0.0007) | 0.4372 (-0.0182) |
| 3.8016 | 18700 | 2.0412 | 2.0849 | 0.4518 (-0.0887) | 0.3533 (+0.0283) | 0.4898 (-0.0108) | 0.4316 (-0.0237) |
| 3.8219 | 18800 | 2.0345 | 2.0858 | 0.4627 (-0.0777) | 0.3467 (+0.0217) | 0.4885 (-0.0121) | 0.4327 (-0.0227) |
| 3.8422 | 18900 | 2.0391 | 2.0858 | 0.4603 (-0.0801) | 0.3401 (+0.0150) | 0.4664 (-0.0342) | 0.4223 (-0.0331) |
| 3.8626 | 19000 | 2.0334 | 2.0879 | 0.4523 (-0.0882) | 0.3504 (+0.0253) | 0.5032 (+0.0025) | 0.4353 (-0.0201) |
| 3.8829 | 19100 | 2.0443 | 2.0870 | 0.4256 (-0.1148) | 0.3554 (+0.0304) | 0.5072 (+0.0066) | 0.4294 (-0.0259) |
| 3.9032 | 19200 | 2.0391 | 2.0866 | 0.4372 (-0.1032) | 0.3538 (+0.0287) | 0.4997 (-0.0009) | 0.4302 (-0.0252) |
| 3.9236 | 19300 | 2.039 | 2.0859 | 0.4392 (-0.1013) | 0.3472 (+0.0221) | 0.4994 (-0.0013) | 0.4286 (-0.0268) |
| 3.9439 | 19400 | 2.0344 | 2.0859 | 0.4586 (-0.0818) | 0.3553 (+0.0303) | 0.4800 (-0.0206) | 0.4313 (-0.0240) |
| 3.9642 | 19500 | 2.0373 | 2.0855 | 0.4460 (-0.0944) | 0.3579 (+0.0329) | 0.4853 (-0.0153) | 0.4298 (-0.0256) |
| 3.9845 | 19600 | 2.0334 | 2.0867 | 0.4517 (-0.0888) | 0.3558 (+0.0307) | 0.4866 (-0.0140) | 0.4314 (-0.0240) |
| 4.0049 | 19700 | 2.0305 | 2.0885 | 0.4414 (-0.0990) | 0.3644 (+0.0394) | 0.4807 (-0.0199) | 0.4288 (-0.0265) |
| 4.0252 | 19800 | 2.0246 | 2.0898 | 0.4413 (-0.0991) | 0.3506 (+0.0255) | 0.4561 (-0.0446) | 0.4160 (-0.0394) |
| 4.0455 | 19900 | 2.0252 | 2.0886 | 0.4442 (-0.0963) | 0.3524 (+0.0274) | 0.4609 (-0.0397) | 0.4192 (-0.0362) |
| 4.0659 | 20000 | 2.0244 | 2.0883 | 0.4377 (-0.1027) | 0.3536 (+0.0285) | 0.4624 (-0.0383) | 0.4179 (-0.0375) |
| 4.0862 | 20100 | 2.0203 | 2.0902 | 0.4245 (-0.1159) | 0.3570 (+0.0320) | 0.4667 (-0.0339) | 0.4161 (-0.0393) |
| 4.1065 | 20200 | 2.0254 | 2.0902 | 0.4236 (-0.1168) | 0.3601 (+0.0350) | 0.4730 (-0.0277) | 0.4189 (-0.0365) |
| 4.1269 | 20300 | 2.0223 | 2.0899 | 0.4231 (-0.1173) | 0.3576 (+0.0326) | 0.4564 (-0.0443) | 0.4124 (-0.0430) |
| 4.1472 | 20400 | 2.029 | 2.0906 | 0.4168 (-0.1237) | 0.3546 (+0.0296) | 0.4536 (-0.0470) | 0.4083 (-0.0470) |
| 4.1675 | 20500 | 2.0268 | 2.0905 | 0.4072 (-0.1332) | 0.3577 (+0.0326) | 0.4670 (-0.0336) | 0.4106 (-0.0447) |
| 4.1878 | 20600 | 2.0244 | 2.0913 | 0.4068 (-0.1336) | 0.3442 (+0.0192) | 0.4718 (-0.0289) | 0.4076 (-0.0478) |
| 4.2082 | 20700 | 2.0247 | 2.0911 | 0.4068 (-0.1336) | 0.3459 (+0.0209) | 0.4708 (-0.0298) | 0.4079 (-0.0475) |
| 4.2285 | 20800 | 2.0181 | 2.0900 | 0.4138 (-0.1266) | 0.3487 (+0.0237) | 0.4613 (-0.0393) | 0.4079 (-0.0474) |
| 4.2488 | 20900 | 2.0234 | 2.0911 | 0.4240 (-0.1164) | 0.3530 (+0.0279) | 0.4681 (-0.0326) | 0.4150 (-0.0403) |
| 4.2692 | 21000 | 2.0198 | 2.0901 | 0.4075 (-0.1329) | 0.3482 (+0.0232) | 0.4594 (-0.0413) | 0.4050 (-0.0503) |
| 4.2895 | 21100 | 2.0245 | 2.0912 | 0.4049 (-0.1355) | 0.3390 (+0.0140) | 0.4734 (-0.0273) | 0.4058 (-0.0496) |
| 4.3098 | 21200 | 2.0234 | 2.0900 | 0.4017 (-0.1387) | 0.3463 (+0.0213) | 0.4707 (-0.0300) | 0.4062 (-0.0491) |
| 4.3301 | 21300 | 2.0359 | 2.0898 | 0.4021 (-0.1383) | 0.3485 (+0.0235) | 0.4795 (-0.0211) | 0.4100 (-0.0453) |
| 4.3505 | 21400 | 2.0234 | 2.0898 | 0.4075 (-0.1329) | 0.3436 (+0.0185) | 0.4649 (-0.0358) | 0.4053 (-0.0500) |
| 4.3708 | 21500 | 2.0229 | 2.0905 | 0.4194 (-0.1210) | 0.3442 (+0.0191) | 0.4680 (-0.0326) | 0.4105 (-0.0448) |
| 4.3911 | 21600 | 2.0226 | 2.0896 | 0.4245 (-0.1159) | 0.3432 (+0.0182) | 0.4688 (-0.0319) | 0.4122 (-0.0432) |
| 4.4115 | 21700 | 2.0257 | 2.0908 | 0.4145 (-0.1259) | 0.3414 (+0.0164) | 0.4567 (-0.0440) | 0.4042 (-0.0512) |
| 4.4318 | 21800 | 2.0212 | 2.0902 | 0.4149 (-0.1255) | 0.3487 (+0.0236) | 0.4550 (-0.0457) | 0.4062 (-0.0492) |
| 4.4521 | 21900 | 2.0281 | 2.0916 | 0.3951 (-0.1453) | 0.3453 (+0.0203) | 0.4601 (-0.0405) | 0.4002 (-0.0552) |
| 4.4725 | 22000 | 2.0312 | 2.0909 | 0.4023 (-0.1382) | 0.3459 (+0.0208) | 0.4570 (-0.0437) | 0.4017 (-0.0537) |
| 4.4928 | 22100 | 2.0143 | 2.0905 | 0.3911 (-0.1493) | 0.3501 (+0.0251) | 0.4518 (-0.0488) | 0.3977 (-0.0577) |
| 4.5131 | 22200 | 2.0287 | 2.0905 | 0.4173 (-0.1231) | 0.3526 (+0.0276) | 0.4563 (-0.0443) | 0.4087 (-0.0466) |
| 4.5334 | 22300 | 2.0156 | 2.0917 | 0.4105 (-0.1299) | 0.3520 (+0.0269) | 0.4495 (-0.0512) | 0.4040 (-0.0514) |
| 4.5538 | 22400 | 2.0244 | 2.0905 | 0.4012 (-0.1393) | 0.3461 (+0.0210) | 0.4506 (-0.0501) | 0.3993 (-0.0561) |
| 4.5741 | 22500 | 2.0296 | 2.0901 | 0.3983 (-0.1421) | 0.3502 (+0.0252) | 0.4526 (-0.0480) | 0.4004 (-0.0550) |
| 4.5944 | 22600 | 2.0293 | 2.0906 | 0.4096 (-0.1308) | 0.3514 (+0.0263) | 0.4467 (-0.0539) | 0.4026 (-0.0528) |
| 4.6148 | 22700 | 2.0239 | 2.0908 | 0.3976 (-0.1428) | 0.3490 (+0.0240) | 0.4510 (-0.0496) | 0.3992 (-0.0562) |
| 4.6351 | 22800 | 2.0255 | 2.0911 | 0.3975 (-0.1429) | 0.3496 (+0.0245) | 0.4579 (-0.0428) | 0.4017 (-0.0537) |
| 4.6554 | 22900 | 2.0167 | 2.0911 | 0.3908 (-0.1497) | 0.3470 (+0.0219) | 0.4534 (-0.0473) | 0.3970 (-0.0583) |
| 4.6757 | 23000 | 2.0205 | 2.0908 | 0.4179 (-0.1225) | 0.3486 (+0.0235) | 0.4516 (-0.0491) | 0.4060 (-0.0493) |
| 4.6961 | 23100 | 2.0284 | 2.0911 | 0.4310 (-0.1095) | 0.3488 (+0.0238) | 0.4499 (-0.0507) | 0.4099 (-0.0455) |
| 4.7164 | 23200 | 2.022 | 2.0910 | 0.4199 (-0.1205) | 0.3469 (+0.0219) | 0.4549 (-0.0458) | 0.4072 (-0.0481) |
| 4.7367 | 23300 | 2.0176 | 2.0910 | 0.4172 (-0.1232) | 0.3449 (+0.0198) | 0.4549 (-0.0458) | 0.4056 (-0.0497) |
| 4.7571 | 23400 | 2.0102 | 2.0915 | 0.4054 (-0.1351) | 0.3456 (+0.0206) | 0.4501 (-0.0506) | 0.4003 (-0.0550) |
| 4.7774 | 23500 | 2.0097 | 2.0916 | 0.4000 (-0.1404) | 0.3442 (+0.0192) | 0.4442 (-0.0564) | 0.3962 (-0.0592) |
| 4.7977 | 23600 | 2.0179 | 2.0907 | 0.3971 (-0.1433) | 0.3455 (+0.0205) | 0.4538 (-0.0468) | 0.3988 (-0.0565) |
| 4.8181 | 23700 | 2.0244 | 2.0913 | 0.3962 (-0.1442) | 0.3444 (+0.0193) | 0.4537 (-0.0470) | 0.3981 (-0.0573) |
| 4.8384 | 23800 | 2.0168 | 2.0903 | 0.4028 (-0.1376) | 0.3417 (+0.0167) | 0.4502 (-0.0504) | 0.3982 (-0.0571) |
| 4.8587 | 23900 | 2.022 | 2.0910 | 0.3988 (-0.1416) | 0.3473 (+0.0223) | 0.4520 (-0.0486) | 0.3994 (-0.0560) |
| 4.8790 | 24000 | 2.0309 | 2.0909 | 0.4078 (-0.1326) | 0.3445 (+0.0195) | 0.4528 (-0.0478) | 0.4017 (-0.0536) |
| 4.8994 | 24100 | 2.0208 | 2.0912 | 0.3954 (-0.1451) | 0.3420 (+0.0170) | 0.4514 (-0.0492) | 0.3963 (-0.0591) |
| 4.9197 | 24200 | 2.0146 | 2.0907 | 0.4085 (-0.1319) | 0.3421 (+0.0171) | 0.4520 (-0.0486) | 0.4009 (-0.0545) |
| 4.9400 | 24300 | 2.0259 | 2.0907 | 0.4032 (-0.1372) | 0.3439 (+0.0188) | 0.4523 (-0.0483) | 0.3998 (-0.0556) |
| 4.9604 | 24400 | 2.0286 | 2.0906 | 0.4032 (-0.1372) | 0.3449 (+0.0199) | 0.4523 (-0.0483) | 0.4002 (-0.0552) |
| 4.9807 | 24500 | 2.0188 | 2.0910 | 0.4022 (-0.1382) | 0.3395 (+0.0145) | 0.4508 (-0.0498) | 0.3975 (-0.0578) |
| -1 | -1 | - | - | 0.5898 (+0.0494) | 0.3760 (+0.0510) | 0.6450 (+0.1443) | 0.5369 (+0.0816) |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.0.0
- Transformers: 4.56.0.dev0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ListNetLoss
@inproceedings{cao2007learning,
title={Learning to Rank: From Pairwise Approach to Listwise Approach},
author={Cao, Zhe and Qin, Tao and Liu, Tie-Yan and Tsai, Ming-Feng and Li, Hang},
booktitle={Proceedings of the 24th international conference on Machine learning},
pages={129--136},
year={2007}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-150m-listnet
Base model
jhu-clsp/ettin-encoder-150mDataset used to train rahulseetharaman/reranker-msmarco-v1.1-ettin-encoder-150m-listnet
Evaluation results
- Map on NanoMSMARCO R100self-reported0.532
- Mrr@10 on NanoMSMARCO R100self-reported0.524
- Ndcg@10 on NanoMSMARCO R100self-reported0.590
- Map on NanoNFCorpus R100self-reported0.344
- Mrr@10 on NanoNFCorpus R100self-reported0.547
- Ndcg@10 on NanoNFCorpus R100self-reported0.376
- Map on NanoNQ R100self-reported0.595
- Mrr@10 on NanoNQ R100self-reported0.607
- Ndcg@10 on NanoNQ R100self-reported0.645
- Map on NanoBEIR R100 meanself-reported0.490