rajistics's picture
update model card README.md
f9ab02d
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - cord-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-cord_800
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: cord-layoutlmv3
          type: cord-layoutlmv3
          config: cord
          split: train
          args: cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9445266272189349
          - name: Recall
            type: recall
            value: 0.9558383233532934
          - name: F1
            type: f1
            value: 0.9501488095238095
          - name: Accuracy
            type: accuracy
            value: 0.9605263157894737

layoutlmv3-finetuned-cord_800

This model is a fine-tuned version of microsoft/layoutlmv3-base on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2042
  • Precision: 0.9445
  • Recall: 0.9558
  • F1: 0.9501
  • Accuracy: 0.9605

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.56 250 0.9737 0.7787 0.8166 0.7972 0.8188
1.3706 3.12 500 0.5489 0.8480 0.8645 0.8562 0.8680
1.3706 4.69 750 0.3857 0.8913 0.9087 0.8999 0.9147
0.3693 6.25 1000 0.3192 0.9117 0.9274 0.9195 0.9317
0.3693 7.81 1250 0.2816 0.9189 0.9326 0.9257 0.9355
0.1903 9.38 1500 0.2521 0.9277 0.9409 0.9342 0.9465
0.1903 10.94 1750 0.2353 0.9357 0.9476 0.9416 0.9550
0.1231 12.5 2000 0.2361 0.9293 0.9446 0.9369 0.9516
0.1231 14.06 2250 0.2194 0.9402 0.9528 0.9465 0.9576
0.0766 15.62 2500 0.2133 0.9416 0.9528 0.9472 0.9580
0.0766 17.19 2750 0.2117 0.9438 0.9558 0.9498 0.9597
0.0585 18.75 3000 0.2152 0.9417 0.9551 0.9483 0.9605
0.0585 20.31 3250 0.2070 0.9431 0.9551 0.9491 0.9588
0.0454 21.88 3500 0.2093 0.9489 0.9588 0.9538 0.9622
0.0454 23.44 3750 0.2034 0.9453 0.9566 0.9509 0.9610
0.0409 25.0 4000 0.2042 0.9445 0.9558 0.9501 0.9605

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1